Графит и алмаз: кристаллическая решетка и свойства. Свойства, которыми обладают и алмаз, и графит

Подписаться
Вступай в сообщество «perstil.ru»!
ВКонтакте:

Всем известны такие вещества, как графит и алмаз. Графит встречается повсюду. Например, из него делают стержни для простых карандашей. Графит - это вещество вполне доступное и дешевое. Но такое вещество, как алмаз, крайне отличается от графита. Алмаз - это самый дорогой камень, очень редкий и прозрачный, в отличие от графита. В это трудно поверить, но химическая формула графита совпадает с формулой алмаза. В данной статье мы разберем, как такое возможно.

Графит: история и свойства минерала

История графита насчитывает тысячи лет, поэтому точный год начала его применения установить крайне трудно. Графит знаменит тем, что хорошо проводит электрический ток. Кроме того, этот минерал является очень хрупким. Поэтому из него делают стержни для карандашей.

К химическим свойствам минерала можно отнести образование соединений включения со многими веществами, такими как соли и Минерал не растворяется в кислотах.

Формула графита - C, то есть он является одной из знаменитого шестого элемента таблицы Менделеева - углерода.

Алмаз: история и свойства минерала

История алмаза очень необычна. Считается, что первый алмаз был найден в Индии. В то время человечество так и не смогло понять всю силу этого камня. Геологам было лишь известно, что этот камень очень твердый и прочный. До 15 века алмазы стоили намного меньше, чем изумруды и рубины. И только потом неизвестный ювелир в процессе работы с камнем придал ему красивую огранку, которую позже стали называть бриллиантовой. Вот тогда-то камень и показал себя во всей своей красе.

Главным образом алмазы используют в промышленности. Этот минерал самый прочный на всем свете, именно поэтому из него делают абразивы, резцы для обработки прочных металлов и многое другое.

Как нам уже известно, формула графита в химии - C, такую же формулу имеет и алмаз.

Различия между алмазом и графитом

Несмотря на то что минералы имеют схожие химические формулы, они резко отличаются друг от друга как внешним видом, так и с химической точки зрения.

Прежде всего, алмаз и графит имеют совершенно различную друг от друга структуру. Ведь графит состоит из сетки шестиугольников, тогда как алмаз имеет кубическую кристаллическую структуру. Хрупкость графита обуславливается тем, что связь между его слоями нарушить очень легко, его атомы спокойно отделяются друг от друга. Из-за этого графит легко поглощает свет, сам он очень темный, в отличие от алмаза.

Отличается тем, что один атом углерода окружен еще четырьмя атомами в виде четырехгранного треугольника или пирамиды. Каждый атом находится на одинаковом расстоянии друг от друга. Связь у атомов очень крепкая, именно поэтому алмаз является таким твердым и прочным. Еще одно свойство алмаза - это то, что он может проводить свет, в отличие от графита.

Странно ли, что формула графита совпадает с формулой алмаза, но при этом минералы совершенно разные? Нет! Ведь алмаз создается природой при огромном давлении, а затем очень быстром охлаждении, тогда как графит возникает при низком давлении, но очень высокой температуре.

вещества?

Аллотропные вещества - это очень важное понятие в химии. Это основа основ, которая позволяет отличать вещества друг от друга.

В школе аллотропные вещества изучают на примере графита и алмаза, а также их различии. Итак, изучив различия алмаза и графита, можно сделать вывод, что аллотропия - это существование в природе двух и более веществ, которые различаются по своему строению и свойствам, но имеют схожую химическую формулу или относятся к одному химическому элементу.

Получение алмаза из графита

Формула графита - C - позволила ученым произвести множество опытов, вследствие чего были найдены аллотропные вещества графита.

Преподаватели рассказывают и школьникам, и студентам о том, как ученые пытались создать алмазы из графита. Эта история очень интересная и увлекательная, а еще она позволяет запомнить о существовании таких аллотропных веществ, как графит и алмаз, и об их различиях.

Некоторое время назад ученые пытались создать алмазы из графита. Они считали, что если формула алмаза и графита одинакова, то они смогут создать алмаз, ведь камень очень дорогой и редкий. Теперь мы знаем, что минерал алмаз появляется в природе при высоком давлении и мгновенном охлаждении. Поэтому ученые решили взорвать ѓрафит, тем самым создав нужные условия для образования алмаза. И на самом деле случилось чудо, после взрыва на графите образовались очень маленькие кристаллы алмаза.

Применение графита и алмаза

На сегодняшний день и графит, и алмаз используют главным образом в промышленности. Но примерно 10 % от всей добычи алмазов идет на ювелирное дело. Чаще всего из графита изготавливают карандаши, так как он очень хрупкий и ломкий, при этом оставляет следы.

Введение

1.1.Общая характеристика алмаза

1.2. Общая характеристика графита

2. Промышленные типы месторождений гранита и алмаза

3. Природные и технологические типы алмазосодержащих и графитовых руд

4. Разработка месторождений гранита и алмаза

5. Области применения гранита и алмаза

Заключение

Список используемой литературы.


Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет – то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему – «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента - углерода. Полиморфные модификации, или полиморфы - это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.


1. Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита - это углерод. Углерод (С) - химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса - 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

1.1 Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр - ромбододекаэдр - куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются - баллас, карбонадо и борт.

Баллас - это сферолитовые образования с радиально-лучистым строением. Карбонадо - скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт - яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1 Строение кристаллической решетки алмаза.


Рис.2 Строение кристаллической решетки алмаза.

1.2 Общая характеристика графита

Графит - серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге.

Структура графита слоистая, внутри слоя атомы связаны смешанными ионно-ковалентными связями, а между слоями - существенно металлическими связями.

Атомы углерода в кристаллах графита находятся в sp2-гибридизации. Углы между направлениями связей равны 120*. В результате образуется сетка, состоящая из правильных шестиугольников.

При нагревании без доступа воздуха графит не претерпевает никакого изменения до 3700 *С. При указанной температуре он выгоняется, не плавясь.

Кристаллы графита - это, как правило, тонкие пластинки.

В связи с низкой твердостью и весьма совершенной спайностью графит легко оставляет след на бумаге, жирный на ощупь. Эти свойства графита обусловлены слабыми связями между атомными слоями. Прочностные характеристики этих связей характеризуют низкая удельная теплоемкость графита и его высокая температура плавления. Благодаря этому, графит обладает чрезвычайно высокой огнеупорностью. Кроме того, он хорошо проводит электричество и тепло, устойчив при воздействии многих кислот и других химических реагентов, легко смешивается с другими веществами, отличается малым коэффициентом трения, высокой смазывающей и кроющей способностью. Все это привело к уникальному сочетанию в одном минерале важных свойств. Поэтому графит широко используется в промышленности.

Содержание углерода в минеральном агрегате и структура графита являются главными признаками, определяющими качество. Графитом часто называют материал, который, как правило, не является не только монокристаллическим, но и мономинеральным. В основном имеют в виду агрегатные формы графитового вещества, графитовые и графитсодержащие породы и продукты обогащения. В них, кроме графита, всегда присутствуют примеси (силикаты, кварц, пирит и др.). Свойства таких графитовых материалов зависят не только от содержания графитового углерода, но и от величины, формы и взаимных отношений кристаллов графита т.е. от текстурно-структурных признаков используемого материала. Поэтому для оценки свойств графитовых материалов необходимо учитывать как особенности кристаллической структуры графита, так и текстурно-структурные особенности других их составляющих.

Рис.3. Строение кристаллической решетки графита.


Рис.4. Вкрапленники графита в кальците.


2. Промышленные типы месторождений алмаза и графита

Месторождения алмазов подразделяются на россыпные и коренные, среди которых выделяются типы и подтипы, различающиеся по условиям залегания, формам рудных тел, концентрациям, качеству и запасам алмазов, условиям добычи и обогащения.

Коренные месторождения алмазов кимберлитового типа во всем мире являются основными объектами эксплуатации. Из них добывается около 80% природных алмазов. По запасам алмазов и размерам они разделяются на уникальные, крупные, средние и мелкие. С наибольшей рентабельностью отрабатываются верхние горизонты выходящих на дневную поверхность уникальных и крупных месторождений. В них сосредоточены основные запасы и прогнозные ресурсы алмазов отдельных алмазоносных кимберлитовых полей. Кимберлиты – это «вулканические жерла», заполненные брекчией. Брекчия состоит из обломков и ксенолитов, окружающих и осевших сверху пород, из обломков пород, вынесенных с глубин 45-90 км и более. Цементом является вулканический материал, туфы щелочно-ультроосновного состава, так называемые кимберлиты и лампроиты. Кимберлитовые трубки располагаются на платформах, лампроитовые – в их складчатом обрамлении. Время образования трубок разное – от архея до кайнозоя, а возраст алмазов, даже самых молодых из них, составляет около 2-3 млрд. лет. Образование трубок связано с прорывом вверх по узким каналам под большим давлением, на глубине свыше 80 км, при температуре около 1000*щелочно-ультроосновных расплавов. Большинство хорошо изученных кимберлитовых тел имеет сложное строение; в наиболее упрощенном случае в строении трубки участвуют две основные разновидности пород, образовавшихся в ходе двух последовательных фаз внедрения: брекчия (1-й этап) и массивный «крупнопорфировый» кимберлит (2-й этап). В строении некоторых кимберлитовых трубок выявлены также кимберлитовые дайки и жилы, связанные с трубками. Обнаружены слепые тела, образованные порциями кимберлитовой магмы, не доходившими до дневной поверхности. Месторождения, связанные с дайками и жилами кимберлитов, как правило, относятся к категории мелких, реже средних по запасам алмазов Во многих случаях прорыв вверх достигал палео-поверхности, но многие трубки взрыва могут быть «слепыми» и до сих пор не вскрыты эрозией, т.е. залегают где-то на глубине. Но и на поверхности Земли есть места, где возникают давления вполне достаточные для образования алмаза. Это места удара метеоритов, где алмаз встречается не только в Земле, но и в ряде самих метеоритов.

И алмаз, и графит — это разные формы одного и того же элемента — углерода. У мягкого, крошащегося графита и у самого твердого кристалла в мире одна и та же формула — С. Как такое возможно?

Свойства алмаза и графита

Алмазы встречаются в природе в хорошо выраженной кристаллической форме. Это прозрачный и чаще всего бесцветный кристалл, хотя бывают и алмазы, окрашенные в голубой, красный и даже черный цвета. Такое цветовое отступление от правила связано с особенностями природных условий формирования кристалла и наличия в нем примесей. Очищенный и отшлифованный алмаз приобретает особый блеск, который и оценили люди.

Алмазы хорошо отражают свет и, обладая сложной формой, хорошо его преломляют. Это дает знамений блеск и перелив очищенного кристалла. Он является проводником тепла, но по отношению к электричеству является изолятором.

Графит представляет собой антипод алмаза. Это не кристалл, а совокупность тонких пластинок. Он черный с серым отливом. По внешнему виду напоминает сталь с преобладанием чугуна.

Несмотря на стальной вид, на ощупь он жирный, а при использовании оказывается еще и мягким. При малейшем надавливании он крошится, что и привлекает человека, использующего графит в качестве средства запечатления информации на бумаге.

Графит, как и алмаз, является хорошим проводником тепла, но, в отличие от своего собрата по молекулярному строению, хорошо проводит и электричество.

Этих разных представителей полиморфности молекулярного углерода отличает друг от друга только одно — строение молекулярной решетки. Все остальное — лишь следствие главного.

В графите кристаллическая решетка организована по плоскостному принципу. Все его атомы размещены в шестиугольнике, которые находятся в одной плоскости. Поэтому связи между атомами разных шестиугольников такие непрочные, а сам графит слоистый, и его слои плохо связаны друг с другом. Такое строение кристаллической решетки определяет его мягкость и разнообразную полезность, но сам графит при этом разрушается. Однако именно такое строение кристаллической решетки позволяет, используя особые условия и другие вещества, сделать из графита алмаз. Такие же процессы происходят с этим минералом в природе при аналогичных условиях.

Алмазная решетка построена по принципу объемных связей всех с каждым и всех со всеми. Атомы образуют правильный тетраэдр. Атом в каждом тетраэдре окружен другими атомами, каждый из которых образует вершину другого тетраэдра. Получается, что тетраэдров в каждом кусочке алмаза гораздо больше, чем молекул, образующих эти тетраэдры, поскольку каждый из тетраэдров является частью другого тетраэдра. По этой причине алмаз является самым неразрушимым минералом.

Судьба углерода в графите и алмазе

Углерод относится к самым массовым элементам биосферы и всей планеты Земля. Он в тех или иных состояниях присутствует в атмосфере (углекислый газ), в воде (растворенный углекислый газ и иные соединения) и в литосфере. Здесь, в тверди земной, он входит в состав больших залежей угля, нефти, природного газа, торфа и т.п. Но в чистом виде он представлен залежами алмаза и графита.

Больше всего углерода сконцентрировано в живых организмах. Любые организмы строят свое тело из углерода, концентрация которого в живых телах превышает содержание углерода в неживой материи. Мертвые организмы оседают на поверхности литосферы или океана. Там они разлагаются в разных условиях, образуя месторождения, богатые углеродом.

Происхождение чистых залежей алмазов и графита вызывает много споров. Есть мнение, что это бывшие организмы, попавшие в особые условия и минерализовавшиеся наподобие угля. Считается также, что алмазы имеют магматическое происхождение, а графит — метаморфическое. Это означает, что в концентрации алмазов на планете участвуют сложные процессы в недрах земли, где самопроизвольно в присутствии кислорода возникает взрыв и горение. В результате взаимодействия молекул метана и кислорода и возникают кристаллы алмаза. При этих же процессах, но в определенных условиях возможно появление и графита.

Как получить из графита алмаз

Получение при современном уровне развития химии давно не является проблемой. То, что природа делает за миллионы лет, человек может сделать за гораздо более короткий срок. Главное — воспроизвести условия, в которых в природе одна форма чистого углерода переходила в другую, то есть создать высокую температуру и очень высокое давление.

Впервые такие условия были созданы с помощью взрыва. Взрыв — это мгновенное горение под большим давлением. После того как собрали то, что удалось собрать, выяснилось, что в графите появились маленькие алмазы. Такое фрагментарное превращение произошло потому, что взрыв создает большое разнообразие давления и температуры. Там, где создались условия для перехода из графита в алмаз, это и произошло.

Эта неустойчивость процессов сделала взрывы неперспективными для производства алмазов из графита. Ученых это, однако, не остановило, и они с упорством продолжали подвергать графит всяким испытаниям в надежде заставить его стать алмазом. Стабильный результат дало нагревание графитового бруска импульсами до температуры в 2000°С, что дало возможность получить алмазы значимых размеров.

Опыты с высоким давлением дали неожиданные результаты — графит превращался в алмаз, но при уменьшении давления переходил в свое исходное состояние. Стабильно уменьшить расстояние между атомами углерода только с помощью одного давления не удавалось. Тогда стали сочетать давление и высокую температуру. Наконец, удалось выяснить диапазон сочетаний температуры и давления, при котором можно получить кристаллы алмаза. Правда, при этом получался только технический алмаз, использование которого в ювелирном деле было затруднено.

Кроме больших затрат на энергетическое обеспечение процесса перевода графита в алмаз существовала еще одна проблема — при увеличении длительности воздействия высокой температурой начинается графитизация алмаза. Все эти тонкости усложняют промышленное производство алмазов. По этой причине в природе, крайне разрушительная для нее, остается актуальной и прибыльной.

Чтобы получить алмаз, предназначенный для ювелирных целей, стали выращивать кристаллы, используя затравку. Готовый кристалл алмаза подвергался воздействию температуры в 1500°, что стимулировало рост сначала быстрый, а потом медленный. Чем больше кристалл, тем медленнее он рос. Этот эффект сделал интересный опыт лишь опытом, поскольку его производство в промышленных масштабах стало нерентабельным. Не улучшило ситуацию и применение метана в качестве «подкормки» растущего алмаза. При высоких давлении и температуре метан разрушается до углерода и водорода. Этот углерод и является «кормом» для алмаза.

Применение алмаза и графита

Оба минерала широко используются в промышленности.

Алмазы применяют:

  • в электротехнике;
  • приборостроении;
  • радиоэлектронике;
  • на буровых установках
  • в ювелирном деле.

Графит используется при:

  • производстве тиглей и иного огнеупорного оборудования;
  • изготовлении смазочных материалов;
  • изготовлении карандашей;
  • производстве оборудования для электроугольной промышленности.

Несмотря на разнообразие применения как графита, так и алмаза в различных отраслях промышленности, можно смело говорить о большей пользе графита. Алмаз по причине идеальности своей кристаллической решетки инертен. Его можно использовать только как алмаз. Большая часть добываемых в природе алмазов уходит на нужды ювелирной промышленности, поскольку минерал является одним из самых дорогих драгоценных камней, становясь бриллиантом, он стимулирует оборот денег, и это его основное свойство в экономике.

Графит, изъятый из природы, становится не самодостаточной ценностью, а великим тружеником производства. Благодаря своим свойствам он используется и в своем истинном, природном виде, то есть как графит, и в качестве средства, на основе которого могут быть получены новые вещества, например, тот же алмаз.

Не каждый знает, но алмаз и графит - две формы одного и того же вещества. Эти минералы полностью отличаются друг от друга по твердости и по характеристикам преломления и отражения света. Причем отличия весьма существенные. Алмаз - наиболее твердый в мире минерал, по шкале Мооса он представляет собой эталон - 10, тогда как твердость графита по этой шкале - всего 2. Таким образом, алмаз и графит одновременно самые похожие и непохожие вещества в мире.

Кристаллические решетки алмаза и графита

Каждое из них происходит из углерода, который, в свою очередь, является самым распространенным элементом биосферы. Он присутствует как в атмосфере, так и в воде, в биологических объектах. В земле он представлен в составе нефти, газа, торфа и так далее. Встречается и в качестве залежей графита и алмаза.

Больше всего углерода в организмах. Боле того, ни один из них не может без него обойтись. А происхождение этого минерала в остальных частях планеты как раз и объясняется нахождением когда-то там живых организмов.

Много споров сопровождает вопрос, откуда взялся графит и алмазы, ведь недостаточно, чтобы был один углерод, необходимо также, чтобы выполнялись определенные условия, при которых этот химический элемент принимал новую структуру. Считается, что происхождение графита метаморфическое, а алмазов - магматическое. Это означает, что образование алмазов на планете сопровождают сложные физические процессы, скорее всего, в глубинных слоях земли при горении и взрывах в присутствии кислорода. Ученые предполагают, что в этот процесс также замешан метан, но точно никто не знает.

Отличия между графитом и алмазом

Основное отличие - это строение алмаза и графита. Алмаз представляет собой минерал, форму углерода. Характеризуется метастабильностью, что означает, что он способен оставаться в неизменно вид бесконечно долго. Алмаз переходит в графит при некоторых специфических условиях, например, при высокой температуре в вакууме.

Графит также является модификацией углерода. Его структура делает минерал очень слоистым, поэтому самое распространенное его применение - изготовления грифеля для карандаша.

Явление, при котором вещества, образованные одним и тем же химическим элементом, имеют разные физические свойства, называется аллотропией. Существуют и другие подобные вещества, однако эти два минерала имеют наибольшую разницу между собой. Решающую роль в этом играют особенности строения кристаллической структуры каждого из минералов.

Алмаз имеет невероятно прочную связь между атомами, что обусловлено их плотным расположением. Смежные атомы ячейки имеют форму куба, где частицы расположены на углах, гранях и внутри их. Это тетраэдрический тип строения. Такая геометрия атомов обеспечивает максимально плотную их организацию. Поэтому твердость алмаза такая высокая.

Низкий атомный номер углерода, показывающий, что атом имеет небольшую атомную массу, а соответственно и радиус, делает его самым твердым веществом на планете. Вместе с тем это совершенно не означает прочность. Расколоть алмаз довольно легко, достаточно его ударить. Такое строение объясняет высокий коэффициент теплопроводности и светопреломления алмаза.

Структура графита совершенно иная. На атомарном уровне она представляет собой ряд пластов, расположенных в разных плоскостях. Каждый из этих пластов представляет собой шестиугольники, которые примыкают друг к другу подобно сотам. При этом сильной связью обладают только атомы, расположенные в пределах каждого слоя, а между слоями связь хрупкая, они практически независимы друг от друга.

След от карандаша - это как раз и есть отделяемые слои графита. Из-за особенности своего строения графит имеет невзрачный вид, поглощает свет, обладает электропроводностью и металлическим блеском.

Получение алмаза из графита

Долгое время получить алмаз было технологически сложно, но к сегодняшнему дню эта не такая и трудная задача. Основной проблемой является повторение процессов в лаборатории в короткий промежуток времени, которые в природе проходят за миллионы лет. Ученые доказали, что условиями перехода алмаза из графита являлась высокая температура и давление.

Впервые такие условия были получены с помощью взрыва. Взрыв является химическим процессом, который представляет собой горение при высокой температуре и скорости. После этого собрали остатки графита, и оказалось, что внутри его образовались маленькие алмазы. То есть превращение произошло только фрагментарно. Причиной этого является разброс параметров внутри самого взрыва. Там, где условия были достаточными для такого превращения, оно и произошло.

Натуральный необработанный алмаз

Такие параметры сделали взрывы малоперспективными для получения алмаза. Однако опыты не прекратились, на протяжении длительного времени ученые продолжали проводить их, чтобы каким-то образом получить этот минерал. Более-менее стабильный результат получился, когда графит попытались нагреть импульсно до температуры в две тысячи градусов. В этом случае удалось получить алмазы приличных размеров.

Однако такие опыты дали еще один неожиданный результат. После превращения графита в алмаз происходил обратный переход алмаза в графит при уменьшении давления, то есть происходила графитизация. Таким образом, получение стабильного результата только с помощью одного давления достичь не удавалось. Тогда вместе с увеличением давления начали нагревать графит. Спустя некоторое время, удалось вычислить диапазон давлений и температур, при которых кристаллы алмаза можно было бы получать. Однако эти методы все еще не позволяли получить минерал ювелирного качества.

Для того чтобы получить камни, пригодные для создания украшений, начали с помощью применения затравки. В качестве ее использовали готовый кристалл алмаза, который нагревали до температуры 1500 градусов, что стимулировало сначала быстрый, а потом медленный рост. Однако применение метода в промышленных масштабах было нерентабельным. Потом начали в качестве подкормки использовать метан, который при таких условия распадался на углерод и водород. Как раз этот углерод и выступал, если можно так сказать, кормом алмаза, позволяющим ему расти намного быстрее.

Таким образом, сегодня этот метод используется для создания . И хотя он и является рентабельным, стоимость таких целых искусственных минералов остается высокой, что делает их не сильно популярными по сравнению с заменителями бриллиантов.

Месторождения минералов

Алмазы зарождаются на глубине 100 км и при температуре 1300 градусов. Кимберлитовая магма, которая образует кимберлитовые трубки, вступает в действие в результате взрывов. Именно такие трубки и представляют собой коренные месторождения алмазов. Впервые подобная трубка была открыта в африканской провинции Кимберли, откуда и пошло ее название.

Наиболее известные месторождения находятся в Индии, России и Южной Африке. На коренные месторождения приходится 80 % всех добываемых алмазов.

Чтобы найти алмаз в природе, используют рентген. Большинство из камней, которые находят, непригодны для ювелирного производства, так как обладают значительным количеством дефектов, в том числе трещинами, включениями, посторонними оттенками флуоресценцией и так далее. Поэтому их применение техническое. Такие камни делят на три категории:

  • борт - камни с зональной структурой;
  • баллас - камни, которые обладают круглой или грушевидной формой;
  • карбонадо - .

Алмазы большого размера с выдающимися характеристиками, как правило, получают свое название. Кроме того, высокая стоимость камня делает его желанным для многих, что гарантирует «кровавую историю».

Графит образуется в результате изменения осадочных пород. В Мексике и на Мадагаскаре можно встретить руду с графитом низкого качества. Наиболее известные месторождения - в Краснодаре и на Украине.

Применение

Применение как алмаза, так и графита намного шире, чем кажется. Для алмаза можно выделить несколько сфер использования.

В ювелирной используют только в огранке, как известно, они носят название бриллиантов. Всего 20 % всех добытых камней пригодны для украшений, а минералов высокого качества и куда меньше.

Бриллианты - самые дорогие в мире камни. По стоимости только некоторые экземпляры рубинов могут сравниться с ними. На стоимость минералов влияют огранка, цвет, оттенок и чистота. Обычно некоторые из этих характеристик невооруженным глазом являются незаметными, однако выявляются при экспертизе.

Использование бриллиантов в украшениях очень распространено. Часто они выступаю как единственный камень или дополняют высококачественные сапфиры, рубины, изумруды. Наиболее частое применение камней - кольца для помолвки.

В технической сфере обычно берут второсортное сырье, с дефектами или с различными оттенками. Технические алмазы разделяются на несколько подкатегорий.

  • алмазы определенной формы, которая годится для изготовления подшипников, наконечников сверл и так далее;
  • необработанные камни;
  • камушки с дефектами, применяемые только для изготовления алмазной крошки и порошка.

Последние применяются либо в очень маленьких деталях, либо в качестве напыления для изготовления режущего и шлифовального инструмента.

В электронике применяются иглы, которые являют собой необработанные кристаллы, имеющие от природы острую вершину, или осколки с такой же вершиной. Буровые установки в промышленности также содержат алмазы. Прослойки из этого минерала используются в микросхемах, счетчиках и так далее, происходит это благодаря высокому коэффициенту теплопроводности и сопротивлению.

Около 60 % всех технических алмазов используется в инструментах. Остальные 40 % в равных количествах:

  • при бурении скважин;
  • переработке;
  • в мелких деталях ювелирных изделий;
  • в шлифовальных кругах.

В чистом виде графит не используется. Его, как правило, обрабатывают. Графит высочайшего качества применяется в виде стержня для карандаша. Наиболее широкое применение графит находит в литье. Здесь он применяется для обеспечения гладкой поверхности стали. Для этого он используется в необработанном виде.

В электроугольной промышленности используют не только природного происхождения минерал, но и созданный. Последний имеет высокую однородность по качеству и чистоте. Высокая проводимость тока делает его также широко используемым для изготовления электродов в приборах. Кроме того, он применяется в качестве щеток для двигателя. В металлургии графит используют как смазочный материал.

Графитовые стержни за свою способность замедлять нейтроны раньше широко использовались при создании атомных реакторов. В частности, именно боровые стержни с графитовыми наконечниками выступали в качестве стержней управления-защиты на Чернобыльской АЭС. Одна из проблем, которая после привела к аварии, была в том, что для гашения цепной реакции нужно было нейтроны поглощать, за что отвечал бор, а не замедлять. Поэтому в момент, когда стержни опустили в активную зону реактора, его энергия возросла скачком, что привело к перегреву. Но это была всего лишь одна из множества причин.

Таким образом, алмаз и графит - два разных минерала с одинаковым элементом в основе. Их структуры делают свойства разными, что и представляет интерес. Каждый из них по-своему красив и имеет очень широкое применение как в очень сложных конструкциях, так и в предметах повседневности.

Добыча алмазов, несомненно, достаточно прибыльный бизнес, который может поддержать экономику любой страны. Но тем не менее, наверняка многим предпринимателям хотелось бы снизить затраты на этих драгоценных камней и этим самым еще увеличить доход алмазодобывающей отрасли. А что, если возможно получать алмазы синтетическим способом из графита?

Чтобы ответить на этот вопрос, необходимо разобраться в природе двух материалов – и графита. Многие еще из уроков помнят, что эти два, казалось бы, таких разных материала целиком и полностью состоят .

Алмаз представляет собой обычно прозрачный кристалл, но может быть и синим, и голубым, и красным, и даже черным. Это самое твердое и прочное вещество на Земле. Такая твердость обусловлена особым строением кристаллической решетки. Она имеет форму тетраэдра, и все атомы углерода находятся на одном расстоянии друг от друга. Графит же темно-серый с металлическим отливом, мягкий и совершенно непрозрачный. Кристаллическая решетка графита расположена слоями, в каждом из которых молекулы собраны в прочные , однако между слоями связь молекул достаточно слабая. То есть, по сути, разница между алмазом и графитом заключается в различном строении кристаллической решетки.

Получение алмаза из графита

Как таковое превращение графита в алмаз возможно. Это доказали еще ученые ХХ века. В 1955 г. был представлен отчет компании General Electric и синтезированы первые алмазы, правда, очень мелкие. Первым осуществил синтез исследователь компании Т. Холл. Для достижения таких успехов было применено оборудование, позволяющее создавать давление в 120 тыс. атмосфер и температуру в 1800°С.

Группой ученых из Allied Chemical Corporation было осуществлено прямое превращение графита в алмаз. Для этого были использованы более экстремальные условия по сравнению с предыдущими методами. Для создания на 1 микросекунду предельного давления в 300 тыс. атмосфер и температуры в 1200°С применялось взрывчатое вещество огромной мощности. В результате в образце графита обнаруживалось несколько мелких частичек алмаза. Данные о результате эксперимента были опубликованы в 1961 г.

Однако это были не все способы получения алмазов из графита. В 1967 г. Р. Уэнторф вырастил первый алмаз на затравке. Скорость роста оказалась достаточно низкой. Самый крупный алмаз Р. Уэнторфа, изготовленный данным методом, достиг размера в 6 мм и веса в 1 карат (примерно 0,2 г).

Современные методы синтеза алмазов из графита

Современные технологии позволяют получать алмазы из графита несколькими методами. Алмазы синтезируются в условиях, максимально приближенных к природным, а также с использованием катализаторов. Производится наращивание кристаллов алмаза в метановой среде, а мелкую алмазную пыль для производства различных абразивов получают методом взрыва взрывчатых веществ или проволоки большим импульсом тока.

Источники:

  • 1 Сравните строение алмаза и графита и их физические свойства: твердость, оптические свойства, электропроводность
  • Народные изобретения, технологии - История и технология получения алмазов

Человек уже давно и близко знаком с таким веществом, как . Этот минерал обладает множеством полезных свойств, позволяющих применять его в самых разных областях, начиная с повседневной жизни и заканчивая сложными фабричными процессами.

Название «графит» произошло от , которое можно перевести с древнегреческого языка как «пишу», « ». Такое наименование обусловлено тем, что именно из графита изготавливаются стержни для карандашей, которые уже не одно помогают людям излагать свои мысли на бумаге, рисовать и делать наброски для живописных полотен. Цвет у графита темно-серый или серовато-черный, также это обладает характерным блеском, сродни металлическому.

Графит представляет собой одну из форм, которые может принимать углерод, в зависимости от того, каким способом связаны друг с другом атомы этого элемента. Графит очень хорошо проводит электричество и обладает высокой устойчивостью к тепловому воздействию, плавится он при температуре более 3500оС. Этот минерал слабо подвержен воздействию кислот, особенно при и средних температурах, а уровень его диамагнетизма существенно превосходит нормальные показатели.



← Вернуться

×
Вступай в сообщество «perstil.ru»!
ВКонтакте:
Я уже подписан на сообщество «perstil.ru»