Оксид серебра 1 графическая формула. Соединения серебра и их получение. Оксидирование серебряных изделий

Подписаться
Вступай в сообщество «perstil.ru»!
ВКонтакте:

1. Оксид серебра (I) – основной оксид, взаимодействующий со всеми кислотами. Он также проявляет некоторые амфотерные свойства, образуя при сплавлении с оксидами щелочных металлов аргенаты состава KAgO.

Способность оксида серебра растворяться в водном аммиаке формально также можно рассматривать как признак амфотерности: Ag 2 O + 4NH 3 + H 2 O = 2 [ Ag(NH 3) 2 ](OH). Гидроксид диамминсеребра является растворимым и достаточно сильным основанием.

При нагревании выше 160 о С оксид серебра разлагается, поэтому при термическом разложении большинства солей серебра и кислородосодержащих кислот (нитратов, сульфатов, сульфитов, карбонатов), а также при обжиге сульфида серебра непосредственно получается металлическое серебро.

2. Гидроксид серебра – AgOH – достаточно сильное (К В =5 . 10 -3), но неустойчивое основание, которое при комнатной температуре распадается на оксид и воду. Попытки получить гидроксид серебра по обменной реакции из растворимой соли приведут к выпадению темно-бурого осадка Ag 2 O: 2AgNO 3 + 2KOH = Ag 2 O + 2KNO 3 + H 2 O

3. Соли серебра. Большинство солей серебра нерастворимы в воде. Растворимы нитрат, ацетат, дигидрофосфат, перхлорат, хлорат и фторид. С другими галогенидами серебро образует характерные осадки, являющиеся качественными реакциями на галогенид-ионы: AgCl – белый творожистый осадок, AgBr – светло-желтый осадок, AgJ – ярко-желтый осадок.

Наименьшее произведение растворимости имеет иодид серебра. Он не растворяется в водном аммиаке, тогда как хлорид серебра дает растворимый хлорид диамминсеребра. Иодид не растворяется и в растворе тиосульфата натрия, а хлорид и бромид растворяются с образованием комплексного иона – дитиосульфатоаргената: AgBr + 2Na 2 S 2 O 3 = Na 3 + NaBr . Эту реакцию используют при закреплении фотоматериалов. Все галогениды серебра растворяются в избытке галогенводородных кислот и галогенидов щелочных металлов: AgJ + KJ = K. Растворение осадков за счет комплексообразования и разрушение комплексных частиц из-за образования малорастворимого соединения являются примерами ионных равновесий в растворах. Направление процесса зависит от соотношения константы нестойкости комплекса и произведения растворимости соли. Например, идет реакция: NO 3 + KJ = AgJ + 2NH 3 + KNO 3 , но не идет K + KJ. Комплексы любых катионов металлов с аммиаком, кроме того, разрушаются действием кислот из-за образования катиона аммония. Следует упомянуть, что комплексные частицы, содержащие катион серебра, бесцветны, т.к. имеют заполненный d-подуровень, и переходы электронов под действием энергии квантов света не происходят.

4. Окислительная способность Ag + . Стандартный электронный потенциал Ag + /Ag равен 0,8 В. Из чего следует, что растворимые соли серебра являются сильными окислителями: PH 3 + 6AgNO 3 + 3H 2 O = 6Ag + H 3 PO 3 + 6HNO 3 . Катион диамминсеребра несколько более слабый окислитель, но он способен, например, окислить альдегид до карбоновой кислоты (реакция «серебряного зеркала»): 2 (OH) + RCOH = RCOONH 4 + 2Ag + 3NH 3 + H 2 O.

Оксид серебра(I) - химическое соединение с формулой Ag 2 O.

Оксид может быть получен взаимодействием нитрата серебра с щёлочью в водном растворе:

Это связано с тем, что образующийся в ходе реакции гидроксид серебра(I) быстро разлагается на оксид и воду:

(p K = 2.875)

Более чистый оксид серебра(I) может быть получен в результате анодного окисления металлического серебра в дистиллированной воде

Ag 2 O практически нерастворим в большинстве известных растворителей, исключая те, с которыми он взаимодействует химически. В воде он образует незначительное число ионов Ag(OH) 2 − . Ион Ag + гидролизуется очень слабо (1:40,000); в водном растворе аммиака разлагается с образованием растворимых производных.

Свежий осадок Ag 2 O легко взаимодействует с кислотами:

где HX = HF, HCl, HBr, HI, HO 2 CCF 3 . Также Ag 2 O реагирует с растворами хлоридов щелочных металлов, образуя хлорид серебра (I) и соответствующую щёлочь.

Обладает фоточувствительностью. При температуре выше 280 °C разлагается.

Нитра́т серебра́ (I) (азотноки́слое серебро́ , «адский камень» , ля́пис ) - неорганическое соединение, соль металла серебра и азотной кислоты с формулой AgNO 3 , бесцветные ромбические кристаллы, растворимые в воде. .

При температуре выше 300 °C разлагается. Хорошо растворим в воде, метиловом спирте, в этиловом спирте, в ацетоне, в пиридине. Нитрат серебра может быть получен растворением серебра в азотной кислоте по реакции:

Нитрат серебра является реактивом на соляную кислоту и соли соляной кислоты, поскольку взаимодействует с ними с образованием белого творожистого осадка хлорида серебра, нерастворимого в азотной кислоте:

При нагревании соль разлагается, выделяя металлическое серебро:

Галогениды серебра - химические соединения серебра с галогенами. Хорошо изучены галогениды одновалентного серебра: фторид - AgF, хлорид - AgCI, бромид - AgBr, иодид Agl.Известны также Ag 2 F и AgF 2 (сильный окислитель). Кристаллы AgF бесцветны, AgCI - белые, AgBr и Agl окрашены в жёлтый цвет. Известны кристаллогидраты AgF·xH 2 O (где х = 1,2,3). AgF нельзя хранить в стеклянной посуде, т. к. разрушается стекло. Все галогениды серебра, за исключением фторидов, обладают очень малой растворимостью в воде; в присутствии соответствующих галогенводородных кислот или их солей растворимость заметно повышается за счёт образования комплексных соединений типа ‑ , где Х - Cl, Вг, I. Все галогениды серебра растворяются в аммиаке с образованием комплексных аммиакатов. Этим пользуются для очистки галогенидов серебра и их перекристаллизации. В твёрдом состоянии галогениды серебра присоединяют газообразный аммиак, образуя комплексные соединения AgX·NH 3 , AgX·ЗNH 3 . Галогениды серебра легко восстанавливаются до металлического серебра под действием Zn, Mg, Hg, щелочных металлов, H 2 . Галогениды AgCI и AgBr могут быть восстановлены металласплавлением с Na 2 CO 3 . Получают галогениды серебра непосредственным взаимодействием галогенов и серебра при высокой температуре. Трудно растворимые галогениды серебра могут быть получены также осаждением из раствора AgNO 3 при помощи соответствующих галогенводородных кислот или их солей (растворимых), а AgF - привзаимодействии Ag 2 O или Ag 2 CO 2 с HF.



Соединения золота (I), свойства и способы получения. Соединения золота (III), оксид и гидроксид, галогениды, способы получения, комплексные соединения. Применение простых веществ и соединений.

Соединения Au(I) -твердые кристаллические солеподобные вещества, в большинстве нерастворимые в воде.

Производные Au(I) образуются при восстановлении соединений Au(III). Большинство соединений Au(I) легко окисляются, переходя в устойчивые производные Au(III).

3AuCl(крист) + KCl(p-p) = K(p-p) + 2Au

Известны: оксид золота(I) Au2O*xH2O фиолетовый, хлорид золота(I) AuCl желтый, получают разложением AuCl3.

Более устойчивы комплексные соединения, например цианидные K, или тиосульфатные K3.

Окси́д зо́лота(III) - бинарное неорганическое химическое соединение золота и кислорода с формулой Au 2 O 3 . Наиболее устойчивый оксид золота.

Получается из гидроксида золота(III) Au 2 O 3 x H 2 O обезвоживанием при нагревании. Полная потеря воды наступает при температуре около 200 о С. . Полученный таким образом оксид золота(III) аморфен. Имеет красный или красно-бурый цвет. Примесь бурого, как и в случае гидроксида золота(III), обычно связывают с присутствием небольшого количества золота(0). Монокристаллы Au 2 O 3 были получены из аморфного оксида гидротермальным синтезом в кварцевой ампуле, заполненной на треть смесью хлорной кислоты HClO 4 и перхлората щелочного металла (температура синтеза 235-275 о С, давление до 30 МПа). Полученные монокристаллы имели рубиново-красный цвет.



Дигидра́т окси́да зо́лота(III) («золотая кислота» ) - Au 2 O 3 2H 2 O, неорганическое комплексное соединение золота, производное оксида золота(III), ранее неверно называемое гидроксид золота(III) или гидроокись золота(III) с приписываемой ему условной формулой Au(OH) 3 .

Если к раствору хлорида золота(III) добавить гидроксид щелочного или щёлочноземельного металла или кипятить его после добавления щелочного карбоната, то выделится осадок гидроксида золота(III), однако обычно сильно загрязнённой примесью осадителя. При подходящих условиях загрязнение удаётся устранить путём экстрагирования кислотами.

В результате высушивания над пятиокисью фосфора получается жёлто-красный или жёлто-коричневый порошок состава AuO(OH). Он растворяется в соляной кислоте и в других кислотах, если они достаточно концентрированные, а также в горячем едком кали, откуда следует, что амфотерен. Так как кислотный характер преобладает, то гидроксид золота(III) называют обычно золотой кислотой . Соли этой кислоты называются ауратами, например K·3·H 2 O -аурат(III) калия. Дигидрат оксида золота (III) легко распадается на оксид золота и воду.

Галогениды, оксиды и гидроксид Au(III)-амфотерные соединения с преобладанием кислотных признаков. Так Au(OH)3 легко растворяется в щелочах, образуя гидроксоаураты (III):

NaOH + Au(OH)3 = Na

Даже растворение в кислотах Au(OH)3 происходит за счет образования анионных комплексов:

Au(OH)3 + 4 HNO3 = H + 3 H2O

В присутствии солей щелочных металлов образуются аураты:

M нитрато-

M сульфато-

Mциано-

M сульфидо-

Кислотный характер галогенидов Au(III)проявляется в их исключительной склонности давать галогеноаураты (III) M.Большинство галогеноауратов хорошо растворимо в воде и органических растворителях.

Особая склонность Au(III) к образованию анионных комплексов проявляется и при гидролизе его тригалогенидов:

AuCl3+H2O== H

AuCl3+H2O== H2

Образующаяся при этом кислота H2 дает трудно растворимую соль Ag2.

Традиционным и самым крупным потребителем золота является ювелирная промышленность. Ювелирные изделия изготавливают не из чистого золота, а из его сплавов с другими металлами, значительно превосходящими золото по механической прочности и стойкости. В настоящее время для этого служат сплавы Au-Ag-Cu, которые могут содержать добавки цинка, никеля, кобальта, палладия.

Значительные количества золота потребляет стоматология: коронки и зубные протезы изготовляют из сплавов золота с серебром, медью, никелем, платиной, цинком. Такие сплавы сочетают коррозионную стойкость с высокими механическими свойствами.

Соединения золота входят в состав некоторых медицинских препаратов, используемых для лечения ряда заболеваний (туберкулёза, ревматоидных артритов и т. д.). Радиоактивное золото используют при лечении злокачественных опухолей.

72. Общая характеристика d-элементов II группы, получение и свойства. Оксиды, гидроксиды, соли – свойства, получение. Применение простых веществ и соединений.

Щёлочноземе́льные мета́ллы - химические элементы 2-й групп периодической таблицы элементов: бериллий,магний, кальций, стронций, барий, радий и унбинилий.

К щёлочноземельным металлам относят только кальций, стронций, барий и радий, реже магний. Первый элемент этой подгруппы, бериллий, по большинству свойств гораздо ближе к алюминию, чем к высшим аналогами группы, в которую он входит. Второй элемент этой группы, магний, в некоторых отношениях значительно отличается от щелочноземельных металлов по ряду химических свойств.

Все щёлочноземельные металлы серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение - стронций). Рост плотности щёлочноземельных металлов наблюдается только начиная с кальция. Самый тяжёлый - радий, по плотности сравнимый с германием (ρ= 5,5 г/см 3).

Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенами даже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор - исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, подобно щелочным металлам и кальцию, хранят под слоем керосина.

Также, в отличие от щелочных металлов, щелочноземельные металлы не образуют надпероксиды и озониды.

1.1.4 Рафинирование серебра 1.2 Простое вещество 1.2.1 Физические свойства 1.2.2 Химические свойства 1.3 Соединения серебра и их получение. 1.3.2 Гидроксид серебра (I) AgOH представляет собой неустойчивый белый осадок. Он обладает амфотерными свойствами, легко поглощает CO2 из воздуха и при нагревании с Na2S образует аргентаты(1.52). Основные свойства гидрооксида серебра усиливаются в присутствие аммиака. Получают AgOH в результате обработки нитрата серебра спиртовым раствором гидрооксида калия при pH=8,5-9 и температуре 45 С(1.51). 1.3.3 Фторид серебра AgF(I) получают прямым взаимодействием элементов при нагревании(1.31), действием плавиковой кислоты на оксид или карбонат серебра,термическим разложением при +200 С.причем наряду с AgF образуется BF3: 1.3.4 Хлорид серебра AgCl(I) может быть получен несколькими способами: обработкой металлического серебра хлорной водой(1.32), действием газообразного HCl на серебро при температуре выше +1150 С(1.28), обработка растворов солей серебра соляной кислотой или раствором какого-либо хлорида. 1.3.5 Бромид серебра AgBr может быть получен в темноте обработкой раствора AgNO раствором HBr (или бромида щелочного металла)(1.67), либо непосредственным взаимодействием брома с металлическим серебром (1.33)(получение AgBr осуществляется в темноте, чтобы исключить фотовосстановление): 1.3.6 Йодид серебра (I) может быть получен в темноте путем непосредственного взаимодействия паров йода с металлическим серебром(1.74), действием йодидов(1.76) и йодоводорода(1.75) на соли серебра: 1.3.7 Карбонат серебра AgCO . Образуется при действии раствора карбоната натрия на растворимые соли серебра: 1.3.8 Сульфат серебра AgSO представляет собой диамагнитные мелкие кристаллы белого цвета. Сульфат серебра растворяется в воде, его можно восстановить до металлического серебра водородом, медью, цинком, железом(1.82). Сульфат серебра получают взаимодействием серебра, оксида серебра, нитрата или карбоната серебра с серной кислотой: 1.3.10 Тиосульфат серебра AgSO представляет собой порошок белого цвета, он мало растворим в воде и растворяется в аммиаке и растворах тиосульфатов щелочных металлов с образованием координационных соединений. Получают тиосульфат серебра взаимодействием ацетата или фторида серебра с тиосульфатом натрия. 1.3.11 Нитрат серебра 1.3.12 Цианид серебра AgCN представляет собой бесцветные ромбоэдрические кристаллы с плотностью 3,95 г/см3 и температурои плавления +320…350 С. Он плохо растворим в воде, растворяется в амммиаке или растворах солей аммония, цианидов и тиосульфатов щелочных металлов с образованием координационных соединений: 1.3.13 Комплексные соединения серебра. Большинство простых соединений одновалентного серебра с неорганическими и органическими реагентами образуют комплексные (координационные) соединения. Многие нерастворимые в воде соединения серебра, например оксид серебра (I) и хлорид серебра, легко растворяются в водном растворе аммиака. Причина растворения заключается в образовании комплексных ионов +. Благодаря образованию координационных соединений многие, плохо растворимые в воде соединения серебра, превращаются в легко растворимые. Серебро может иметь координационные числа 2,3,4 и 6. Известны многочисленные координационные соединения у которых вокруг центрального иона серебра скоординированны нейтральные молекулы аммиака или аминов (моно- или диметиламин, пиридин, анилин и т.д.). При действие аммиака или различных органических аминов на оксид, гидрооксид, нитрат, сульфат, карбонат серебра образуются соединения с комплексным катионом, например +, +, +, +, .При растворении галогенидов серебра (AgCl,AgBr,AgI) в растворах галогенидов, псевдогалогенидов или тиосульфатов щелочных металлов образуются растворимые в воде координационные соединения, содержащие комплексные анионы, например -, 2-, 3-, 2- и т.д. Примером получения комплексного соединения может служить реакция между бромидом серебра и тиосульфатом натрия.

← Вернуться

×
Вступай в сообщество «perstil.ru»!
ВКонтакте:
Я уже подписан на сообщество «perstil.ru»