В конструкторе имеются три вида фигур кубики. Типология учебных моделей. Ставим численный эксперимент

Подписаться
Вступай в сообщество «perstil.ru»!
ВКонтакте:

"...вечно куда-то спешат, ни минуты свободного времени... некогда ни присесть, ни подумать, а если в сплошном потоке их развлечений и покажется небольшой просвет - тут как тут сома, прекрасная сома...",- писал известный английский писатель Олдос Хаксли.

Китайская головоломка танграм, известная вот уже несколько тысячелетий, представляет собой квадрат из какого-нибудь тонкого материала, определенным образом разрезанный на семь частей (подробнее о танграме см. в главе 23). Игра заключается в том, что из семи элементов складывают различные фигурки. Время от времени предпринимались попытки создать трехмерные аналоги танграма, но ни одна из них не может сравниться с кубиками сома, изобретенными датчанином Питом Хейном, о чьих математических играх гексе и так-тиксе мы уже рассказывали.

Кубики сома Пит Хейн придумал во время лекции Вернера Гейзенберга по квантовой механике. Пока знаменитый физик говорил о пространстве, разрезанном на кубики, живое воображение Пита Хейна подсказало ему формулировку любопытной геометрической теоремы: если взять все неправильные фигуры, которые составлены из трех или четырех кубиков, склеенных между собой гранями, то из них можно составить один кубик большего размера.

Поясним сказанное. Простейшая неправильная фигура - "неправильная" в том смысле, что на ней имеются выступы и впадины,- получится, если склеить три кубика так, как показано на рис. 115, 1. Это единственная неправильная фигура, которую можно построить из трех кубиков (из одного или двух кубиков, очевидно, нельзя составить ни одной неправильной фигуры). Взяв четыре кубика, мы сможем построить шесть различных неправильных тел. Они изображены на рис. 115, 2-7. Чтобы как-то отличать построенные фигуры, Хейн перенумеровал их. Все семь неправильных фигур попарно различны, хотя фигуры 5 и 6 совмещаются при зеркальном отражении. Хейн обратил внимание на то, что, склеивая два куба, мы увеличиваем протяженность тела лишь в одном направлении. Чтобы увеличить протяженность тела в другом направлении, нам нужен еще один, третий кубик. Четыре кубика позволят увеличить протяженность тела в трех направлениях. Поскольку, даже взяв пять кубиков, мы не увеличим размерность фигуры до четырех, набор кубиков сома разумно ограничить семью фигурами, изображенными на рис. 115. Совершенно неожиданно выяснилось, что из этих семи элементов можно сложить один большой куб.

Тут же на лекции Гейзенберга Пит Хейн прикинул на листке бумаги, что из семи элементов, склеенных из 27 маленьких кубиков, можно составить куб размером 3×3×3. После лекции он склеил из 27 кубиков свои семь элементов и быстро убедился в правильности своей догадки. Фирмы, занимающиеся производством игрушек, выпустили кубики Хейна в продажу под названием "Сома". Составление фигурок из семи неправильных элементов весьма популярно в скандинавских странах.

Чтобы самому сделать кубики для игры сома - а мы настоятельно рекомендуем эту игру своим читателям, она понравится всем,- достаточно взять самые обыкновенные детские кубики и из них склеить все семь элементов. По сути дела, игру сома можно рассматривать как трехмерный вариант полиомино, о котором мы уже рассказывали.

В качестве введения в искусство игры сома попробуйте сложить из любых двух элементов ступенчатую фигуру, изображенную на рис. 116. Справившись с этой элементарной задачей, попытайтесь собрать из всех семи элементов куб. Один из читателей составил список более 230 различных решений (не считая тех, которые получаются при поворотах и отражениях куба), но точное число всех решений пока неизвестно. При составлении куба выгодно сначала брать более неправильные элементы (5, 6 и 7 на рис. 115), поскольку заполнять образовавшиеся пустоты остальными элементами не так уж сложно. В частности, элемент 1 лучше всего брать последним.

Построив куб, испытайте свои силы в складывании более сложных фигур, показанных на рис. 117. Действуя методом проб и ошибок, вы потеряете много времени. Разумнее, проанализировав конструкции,ускорить строительство. В этом вам поможет ваше геометрическое воображение. Например, элементы 5, 6 и 7 не могут служить ступеньками, ведущими к "колодцу". Изготовив несколько наборов для игры сома, вы сможете проводить соревнования. Победителем считается тот, кто быстрее других сложит заданную фигуру. Во избежание споров о том, как должна выглядеть та или иная фигура, следует сказать, что задние стороны "пирамиды" и "парохода" выглядят точно так же, как передние стороны этих фигур; углубление в "ванне" и шахта "колодца" имеют объем, равный трем кубикам; на задней стене "небоскреба" нет ни выступов, ни углублений, а столик, образующий заднюю часть головы "собаки", состоит из четырех кубиков (самый нижний кубик на рисунке не виден).

Провозившись несколько дней с необычными кубиками, многие настолько осваиваются с их формой, что при составлении новых фигур сома могут производить все необходимые действия в уме. Тесты, проведенные европейскими психологами, показали, что между способностью решать головоломки с кубиками сома и общим уровнем развития имеется определенная корреляция, но на обоих концах кривой, характеризующей умственное развитие, возможны сильные расхождения. Некоторые гении оказываются совершенно неспособными к игре, и, наоборот, у некоторых умственно отсталых индивидуумов сильно развита именно та разновидность пространственного воображения, которая требуется для игры сома. Интересно, что каждый, кто подвергается такому тесту, с удовольствием продолжает игру и после его окончания.

Так же как и двумерные полиомино, конструкции кубиков сома связаны с интереснейшими теоремами комбинаторной геометрии, в частности с доказательством невозможности того или иного построения. Рассмотрим левую фигуру на рис. 118. Построить ее не удалось никому, но лишь недавно было строго доказано, что составить ее из кубиков сома действительно невозможно. Мы приведем здесь это остроумное доказательство, принадлежащее Соломону В. Голомбу.

Прежде всего перерисуем вид сверху фигуры, изображенной на рис. 118 слева, и раскрасим столбики (при рассмотрении сверху каждый столбик "скроется" под гранью своего верхнего кубика) в шахматном порядке. В каждом столбике, за исключением центрального, по два кубика. Центральный столбик построен из трех кубиков. Всего в фигуре 8 белых кубиков и 19 черных. Удивительная асимметрия!

Следующий этап доказательства заключается в том, что для каждого из семи элементов игры сома находят такую ориентацию, при которой этот элемент, если поместить его под наш шахматный трафарет, будет обладать максимальным числом черных кубиков. Максимальное число черных кубиков для каждого элемента указано в таблице. Как видно из нее, всего имеется 18 черных и 9 белых кубиков, то есть для соотношения 19:8, характеризующего нашу фигуру, не хватает лишь одного черного кубика. Если верхний черный кубик передвинуть на любой из белых столбиков, то соотношение черных и белых кубиков станет равным 18:9. Такую фигуру можно построить.


Должен признаться, что одну из фигур, изображенных на рис. 117, нельзя составить из элементов игры сома, однако, для того чтобы найти ее, читателю придется потратить не один день. Ниже мы не будем останавливаться на способах построения остальных фигур, изображенных на рис. 117 (овладение искусством составления таких фигур - лишь вопрос времени), но укажем ту, которую нельзя построить.

Число забавных фигурок, которые можно составить из семи элементов сома, по-видимому, так же неограниченно, как число плоских фигур, выложенных из семи элементов танграма. Интересно заметить, что если отложить элемент 1, то из шести остальных элементов можно составить фигуру в точности такой же формы, что и элемент 1, но вдвое больших размеров.

Написав заметку об игре сома, я предполагал, что лишь немногие читатели возьмут на себя труд изготовить полный набор ее элементов, и жестоко ошибся. Тысячи читателей прислали зарисовки новых фигур игры сома, а многие писали, что их досуг стал проходить значительно интереснее с тех пор, как их "укусила муха сома". Учителя изготовляли наборы кубиков сома для своих классов, психологи включили составление фигур из них в число своих тестов. Поклонники кубиков сома изготовляли наборы из семи элементов для своих друзей, попавших в больницу, для знакомых в качестве рождественского подарка. Фирмы, занимающиеся производством игрушек, стали интересоваться правами на изготовление кубиков сома. На прилавках магазинов игрушек появились наборы деревянных кубиков сома.

На рис. 119 показаны 12 из многих сотен новых фигур, присланных читателями. Все 12 фигур действительно можно построить.

На мой взгляд, популярность кубиков сома связана с тем, что в этой игре используется только семь элементов и играющий не подавлен чрезмерной сложностью. Невольно напрашивается мысль о создании других игр, использующих большее число элементов. Описанию таких игр посвящены многие из полученных мной писем.

Т. Кацанис предложил набор из восьми различных элементов, которые можно составить из четырёх кубиков. В его набор входят шесть элементов кубиков сома плюс цепочка из четырех склеенных подряд кубиков и квадрат 2×2. Кацанис назвал свою игру квадракубиками. Позднее другими читателями были предложены тетракубики. Из восьми квадракубиков нельзя построить куб, но их можно расположить вплотную друг к другу так, что они будут образовывать прямоугольный параллелепипед размером 2×4×4, вдвое больший квадратного тетракубика. Аналогичным образом можно составить и увеличенные модели остальных семи элементов.

Кацанис также обнаружил, что восемь элементов придуманной им игры можно разделить на две группы по четыре элемента в каждой, так что из элементов каждой группы можно будет построить прямоугольный параллелепипед 2×4×4. Комбинируя эти параллелепипеды, можно построить увеличенные модели шести из восьми исходных элементов.

Если взять трехмерные пентамино, составленные не из квадратов, а из единичных кубов, то из двенадцати элементов можно построить прямоугольный параллелепипед 3×4×5. Из трехмерных пентамино можно сложить прямоугольные параллелепипеды 2X5X6 и 2×3×10.

Следующая по сложности игра - складывание фигур из 29 элементов, построенных из пяти кубиков. Ее также придумал Кацанис. Он предложил назвать эту игру пентакубиками. Шесть пар пентакубиков переходят друг в друга при отражениях. Взяв по одному элементу из каждой пары, мы понизим число элементов в полном наборе до 23. И 29, и 23 - простые числа, поэтому, какой бы набор пентакубиков мы ни взяли, полный или малый, нам все равно не удастся построить прямоугольный параллелепипед. Кацанис сформулировал задачу утроения: выбрав один из 29 элементов, построить из остальных 28 втрое большую его модель.

Изящный набор пентакубиков прислал Д. Кларнер . Вытряхнув их из коробки, в которую они были упакованы, я так и не смог (до сих пор) уложить их обратно. Кларнер потратил много времени на конструирование необычных фигур из пентакубиков, немало времени пришлось потратить и мне, чтобы воспроизвести некоторые из них. Он также сообщил мне, что существует 166 гексакубиков (фигур, получаемых при склеивании шести кубиков), но был так любезен, что их набора мне не прислал.

Ответы

Единственная фигура на рис. 117, которую нельзя построить из семи элементов кубиков сома,- небоскреб.

Тема урока: “Геометрическое конструирование из кубиков”.

Тип урока: урок-практикум.

Технология: проектная.

Оборудование: компьютерный класс, проекционное оборудование.

Дополнительные материалы: разноуровневые карточки-задания, заготовка к карточкам в электронном виде.

Цели урока: закрепить навыки использования графического редактора, продемонстрировать возможности использования PAINT в геометрическом моделировании, конструировании объемных фигур.

Задачи урока:

  • Воспитательная – развитие познавательного интереса, воспитание информационной культуры, аккуратности при выполнении задания.
  • Учебная – повторить и закрепить основные навыки работы с графическим редактором и
  • Развивающая – развитие логического мышления, пространственного воображения, творческих способностей учащихся.

ХОД УРОКА

I. Оргмомент

II. Повторение изученного на предыдущем уроке. Фронтальный опрос

– Окружающие нас предметы имеют объемную форму. Одна из любопытных, красивых и в то же время самая “знакомая” нам с самого детства объемная фигура – куб или, как мы его ласково называем – кубик . Кто из нас в детстве не играл в кубики, не строил замки и пирамиды из деревянных, пластмассовых, больших и маленьких кубиков!?

– Кто может ответить на вопрос – чем отличается квадрат от кубика?

– Что можно сделать из квадратов? А из кубиков?

– Как можно назвать построение из простых фигур более сложных? (Конструирование, моделирование)

– А как называют людей, которые таким делом заняты? (Конструкторы, моделисты)

– Каким приемом мы пользовались при составлении мозаики и при конструировании плоских изображений из квадратов? (Копирование)

– Какие действия выполняем для копирования?

  • выделить фрагмент, Правка – Копировать;
  • правой кнопкой, через контекстное меню;
  • с помощью клавиатуры.

– Что такое буфер обмена?

III. Практическая работа по конструированию объемных фигур

Обсуждение примера, представленного на доске (проекторе)

Выводим правила конструирования из кубиков, пытаясь выполнить задание на компьютере самостоятельно.

Эти правила:

  1. Перед началом конструирования определите, сколько рядов в высоту занимает конструкция.
  2. Начинайте построение с нижнего ряда, надстраивая верхние ряды.
  3. Важное правило для выполнения практической работы – создать дубликат кубика, сохранив нетронутым оригинал!

IV. Работа с карточками-заданиями разного уровня сложности

Задача состоит в создании конструкции и подсчете количества кубиков для построения. Для выполнения заданий в папке обмена на компьютерах учащихся уже имеется заготовка кубика. Учащиеся копируют ее в свою рабочую папку и по желанию могут перекрасить заготовку на свое усмотрение. Учитель по ходу выполнения задания отмечает учащихся, которые увидели повторяющие фрагменты в объемной фигуре и при конструировании используют копирование сразу целых блоков конструкции.

V. Подведение итогов

Критериии оценивания

  • наиболее аккуратная работа (учитывается точность подсчета кубиков);
  • кто сумел выполнить больше всех конструкций.

VI. Домашнее задание

  • Нарисовать “интересную” композицию из кубиков.
  • Конструирование собственной конструкции. Придумать ее назначение, название. Оформить на отдельном листе.

Критерии оценивания домашнего задания: фантастичность, аккуратность, сложность, конструкция содержит больше всего кубиков, объемность конструкции.

Примеры карточек-заданий

1. Составьте композицию 1 из кубиков:

Не забывайте правила:

  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.

2. Составьте композицию 2 из кубиков:

Не забывайте правила:

  • Начинайте построение с нижнего ряда, надстраивая верхние.
  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.
  • “Быстрое” копирование фрагмента можно выполнять с помощью клавиши Ctrl

3. Составьте композицию 3 из кубиков:

Не забывайте правила:

  • Начинайте построение с нижнего ряда, надстраивая верхние.
  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.
  • “Быстрое” копирование фрагмента можно выполнять с помощью клавиши Ctrl

4. Составьте композицию 4 из кубиков:

Не забывайте правила:

  • Начинайте построение с нижнего ряда, надстраивая верхние.
  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.
  • “Быстрое” копирование фрагмента можно выполнять с помощью клавиши Ctrl

5. Составьте композицию 5 из кубиков:

Не забывайте правила:

  • Начинайте построение с нижнего ряда, надстраивая верхние.
  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.
  • “Быстрое” копирование фрагмента можно выполнять с помощью клавиши Ctrl

6. Составьте композицию 6 из кубиков:

Не забывайте правила:

  • Начинайте построение с нижнего ряда, надстраивая верхние.
  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.
  • “Быстрое” копирование фрагмента можно выполнять с помощью клавиши Ctrl

7. Составьте композицию 7 из кубиков:

Не забывайте правила:

  • Начинайте построение с нижнего ряда, надстраивая верхние.
  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.
  • “Быстрое” копирование фрагмента можно выполнять с помощью клавиши Ctrl

8. Составьте композицию 8 из кубиков:

Не забывайте правила:

  • Начинайте построение с нижнего ряда, надстраивая верхние.
  • Построения в рядах следует вести слева направо, с заднего плана продвигаясь к переднему.
  • “Быстрое” копирование фрагмента можно выполнять с помощью клавиши Ctrl

При создании статичных чертежей специфические возможности «Математического конструктора» используются лишь в небольшой степени. Мы уже отметили ключевую особенность построений в среде динамической геометрии: любые чертежи в «Математическом конструкторе», в отличие от начерченных на бумаге или на классной доске, относятся не к индивидуальной геометрической фигуре, а к целому непрерывному семейству фигур.

2.1. Совершаем открытие

Ученика вряд ли удивит, что при деформации треугольника луч, построенный как биссектриса его угла, всегда будет делить этот угол пополам – ведь именно так этот луч и построен. Но если провести все три биссектрисы, то мы увидим, что они будут всегда пересекаться в одной точке, хотя эту точку мы и не строили – она возникла «сама». А это уже маленькое геометрическое открытие!

И такое открытие может перевернуть весь ход урока – от заунывного изложения «фактов», пусть даже сопровождаемого пассивным иллюстрированием, вы переходите к активному стимулированию творческого потенциала учеников, развиваете в них навык видеть, формулировать и понимать геометрические закономерности, существенно увеличиваете степень эмоциональной вовлеченности и запоминаемость изучаемого материала. Вот более сложная модель такого типа.

2.2. Ставим численный эксперимент

Все расстояния, углы и площади в «Математическом конструкторе» легко измеряемы. Это позволяет проводить численные экспериментальные наблюдения, которые могут вести к самостоятельному открытию тех или иных фактов.

2.3. Открываем «чёрный ящик»

Нравятся ученикам и задания типа «черный ящик», в которых, наблюдая за изменениями одних элементов чертежа при перемещении других элементов, учащиеся должны разгадать скрытый связывающий их «механизм». Например: дана фигура и ее образ при некотором движении. Требуется указать вид движения и его параметры.

Отгадай преобразование

2.4. Выбираем правильный ракурс

Специфическим классом задач, в которых манипулирование компьютерной моделью предоставляет ученику качественно новые возможности, являются стереометрические чертежи. Развитие пространственного воображения – одна из важнейших целей при изучении стереометрии. Нередко в стереометрической задаче достаточно взглянуть на пространственную конструкцию с нужной точки – и принцип решения станет понятен без долгих объяснений.

Сечение тетраэдра

2.5. Ищем экстремум

Изменчивость динамических моделей даёт возможность исследовать различные граничные и экстремальные ситуации. Предположим, например, что вы построили треугольник по трём заданным сторонам. Вы начинаете менять их длины, и треугольник вдруг исчезает. Это естественным образом приводит к важному вопросу об условии, при котором треугольник с заданными длинами сторон существует.

В примере ниже представлена знаменитая задача Герона о кратчайшем пути, который начинается в заданной точке, достигает заданной прямой и заканчивается в другой точке, лежащей по ту же сторону от прямой, что и первая. Студенты должный найти решение с помощью численного эксперимента. В случае затруднения они могут воспользоваться подсказками.

Задача Герона

2.6. Исследуем геометрическое место точек

В «Математическом конструкторе» имеется возможность исследования геометрического места точек. Изучать возможные положения точек можно как при помощи рисования растрового следа точек, так и создавая специальный объект – Геометрическое место точек (ГМТ). Возможность динамического исследования ГМТ открывает новую обширную область для экспериментов и исследования – разнообразные кривые. Преимущества, которые здесь обеспечивает компьютер, очевидны.

Мы смоделировали известную задачу о «котенке на лестнице». Модель позволяет не только увидеть траекторию точки на отрезке постоянной длины, скользящем своими концами по сторонам прямого угла (эллипс), но и проследить за ее эволюцией при изменении положения точки. Когда точка в середине отрезка эллипс превращается в окружность, что несложно доказать.



← Вернуться

×
Вступай в сообщество «perstil.ru»!
ВКонтакте:
Я уже подписан на сообщество «perstil.ru»