Полная механическая энергия системы. Механическая энергия и ее виды. Работа и энергия

Подписаться
Вступай в сообщество «perstil.ru»!
ВКонтакте:

Цель этой статьи - раскрыть сущность понятия «механическая энергия». Физика широко использует это понятие как практически, так и теоретически.

Работа и энергия

Механическую работу можно определить, если известны сила, действующая на тело, и перемещение тела. Существует и другой способ для расчета механической работы. Рассмотрим пример:

На рисунке изображено тело, которое может находиться в различных механических состояниях (I и II). Процесс перехода тела из состояния I в состояние II характеризуется механической работой, то есть при переходе из состояния I в состояние II тело может осуществить работу. При осуществлении работы меняется механическое состояние тела, а механическое состояние можно охарактеризовать одной физической величиной - энергией.

Энергия - это скалярная физическая величина всех форм движения материи и вариантов их взаимодействия.

Чему равна механическая энергия

Механической энергией называют скалярную физическую величину, которая определяет способность тела выполнять работу.

А = ∆Е

Поскольку энергия - это характеристика состояния системы в определенный момент времени, то работа - это характеристика процесса изменения состояния системы.

Энергия и работа обладают одинаковыми единицами измерения: [А] = [Е] = 1 Дж.

Виды механической энергии

Механическая свободная энергия делится на два вида: кинетическую и потенциальную.

Кинетическая энергия - это механическая энергия тела, которая определяется скоростью его движения.

Е k = 1/2mv 2

Кинетическая энергия присуща подвижным телам. Останавливаясь, они выполняют механическую работу.

В различных системах отсчета скорости одного и того же тела в произвольный момент времени могут быть разными. Поэтому кинетическая энергия - относительная величина, она обуславливается выбором системы отсчета.

Если на тело во время движения действует сила (или одновременно несколько сил), кинетическая энергия тела меняется: тело ускоряется или останавливается. При этом работа силы или работа равнодействующей всех сил, которые приложены к телу, будет равняться разнице кинетических энергий:

A = E k1 - E k 2 = ∆Е k

Этому утверждению и формуле дали название - теорема о кинетической энергии .

Потенциальной энергией именуют энергию, обусловленную взаимодействием между телами.

При падении тела массой m с высоты h сила притяжения выполняет работу. Поскольку работа и изменение энергии связаны уравнением, можно записать формулу для потенциальной энергии тела в поле силы тяжести :

E p = mgh

В отличие от кинетической энергии E k потенциальная E p может иметь отрицательное значение, когда h<0 (например, тело, лежащее на дне колодца).

Еще одним видом механической потенциальной энергии является энергия деформации. Сжатая на расстояние x пружина с жесткостью k имеет потенциальную энергию (энергию деформации):

E p = 1/2 kx 2

Энергия деформации нашла широкое применение на практике (игрушки), в технике - автоматы, реле и другие.

E = E p + E k

Полной механической энергией тела именуют сумму энергий: кинетической и потенциальной.

Закон сохранения механической энергии

Одни из самых точных опытов, которые провели в середине XIX века английский физик Джоуль и немецкий физик Майер, показали, что количество энергии в замкнутых системах остается неизменной. Она лишь переходит от одних тел к другим. Эти исследования помогли открыть закон сохранения энергии :

Полная механическая энергия изолированной системы тел остается постоянной при любых взаимодействиях тел между собой.

В отличие от импульса, который не имеет эквивалентной формы, энергия имеет много форм: механическую, тепловую, энергию молекулярного движения, электрическую энергию с силами взаимодействия зарядов и другие. Одна форма энергии может переходить в другую, например, в тепловую кинетическая энергия переходит в процессе торможения автомобиля. Если сил трения нет, и тепло не образуется, то полная механическая энергия не утрачивается, а остается постоянной в процессе движения или взаимодействия тел:

E = E p + E k = const

Когда действует сила трения между телами, тогда происходит уменьшение механической энергии, однако и в этом случае она не теряется бесследно, а переходит в тепловую (внутреннюю). Если над замкнутой системой выполняет работу внешняя сила, то происходит увеличение механической энергии на величину выполненной этой силой работы. Если же замкнутая система выполняет работу над внешними телами, тогда происходит сокращение механической энергии системы на величину выполненной ею работы.
Каждый вид энергии может превращаться полностью в произвольный иной вид энергии.

Подведем некоторые итоги. В предыдущих параграфах было выяснено, что:

1) если отдельные тела системы движутся с некоторыми скоростями, то от них может быть получена работа за счет уменьшения кинетической энергии этих тел:

где равно сумме изменений кинетической энергии всех тел системы;

2) если в системе тел действуют какие-либо консервативные силы, то работа может быть получена также за счет уменьшения

потенциальной энергии этой стемы:

Поэтому можно сказать, что полная работа, которую может отдать такая система, будет всегда равна

Сумма потенциальной и кинетической энергий системы тел получила название полной энергии системы:

Полная энергия системы определяет ту работу, которую можно получить от данной системы тел при ее взаимодействии о какими-либо другими телами, не входящими в эту систему.

Определим сначала, что может происходить с энергией изолированной системы, если телам предоставить возможность свободно двигаться под действием внутренних сил.

Пусть тело массы находится на высоте над поверхностью Земли и имеет скорость (рис. 5.33). В этом положении у тела будет кинетическая энергия и потенциальная энергия Полная энергия системы будет равна

Допустим, что тело перешло на высоту и его скорость стала равной При этом движении сила тяжести совершит работу

Вся эта работа будет израсходована на увеличение кинетической энергии тела:

(Трения и внешних сил нет.) Подставим в это выражение значение работы и перегруппируем члены уравнения:

Левая часть найденного выражения определяет полную энергию системы для начального момента времени:

Правая же часть определяет полную энергию системы для конечного момента времени:

В результате можно записать:

Оказалось, что при движении тел изолированной системы только под действием внутренних сил полная энергия системы не изменяется. При движении тел произошло только превращение части потенциальной энергии в кинетическую. В этом и состоит закон сохранения энергии, который можно сформулировать следующим образом: в изолированной системе тел полная энергия остается постоянной во все время движения тел; в системе происходят лишь превращения энергии из одного вида в другой.

Отсюда же следует, что если на систему действуют какие-либо внешние силы, то изменения полной энергии системы равны работе этих внешних сил.

Если в системе действуют силы трения, то полная энергия системы при движении тел уменьшается. Она расходуется на работу против этих сил. Одновременно работа сил трения производит нагревание. Как уже говорилось ранее, при работе сил трения происходит превращение механического движения в тепловое. Количество выделившегося тепла при этом в точности равно убыли полной механической энергии системы.

Взгляните: катящийся по дорожке шар сбивает кегли, и они разлетаются по сторонам. Только что выключенный вентилятор ещё некоторое время продолжает вращаться, создавая поток воздуха. Обладают ли эти тела энергией?

Заметим: шар и вентилятор совершают механическую работу, значит, обладают энергией. Они обладают энергией потому, что движутся. Энергию движущихся тел в физике называют кинетической энергией (от греч. «кинема» – движение).

Кинетическая энергия зависит от массы тела и скорости его движения (перемещения в пространстве или вращения). Например, чем больше масса шара, тем больше энергии он передаст кеглям при ударе, тем дальше они разлетятся. Например, чем больше скорость вращения лопастей, тем дальше вентилятор переместит поток воздуха.

Кинетическая энергия одного и того же тела может быть различной с точек зрения различных наблюдателей. Например, с нашей точки зрения как читателей этой книги, кинетическая энергия пня на дороге равна нулю, так как пень не движется. Однако по отношению к велосипедисту пень обладает кинетической энергией, поскольку стремительно приближается, и при столкновении совершит очень неприятную механическую работу – погнёт детали велосипеда.

Энергию, которой тела или части одного тела обладают потому, что взаимодействуют с другими телами (или частями тела), в физике называют потенциальной энергией (от лат. «потенциа» – сила).

Обратимся к рисунку. При всплытии мяч может совершить механическую работу, например, вытолкнуть нашу ладонь из воды на поверхность. Расположенная на некоторой высоте гиря может совершить работу – расколоть орех. Натянутая тетива лука может вытолкнуть стрелу. Следовательно, рассмотренные тела обладают потенциальной энергией, так как взаимодействуют с другими телами (или частями тела). Например, мяч взаимодействует с водой – архимедова сила выталкивает его на поверхность. Гиря взаимодействует с Землёй – сила тяжести тянет гирю вниз. Тетива взаимодействует с другими частями лука – её натягивает сила упругости изогнутого древка лука.

Потенциальная энергия тела зависит от силы взаимодействия тел (или частей тела) и расстояния между ними. Например, чем больше архимедова сила и глубже мяч погружён в воду, чем больше сила тяжести и дальше гиря от Земли, чем больше сила упругости и дальше оттянута тетива, – тем больше потенциальные энергии тел: мяча, гири, лука (соответственно).

Потенциальная энергия одного и того же тела может быть различной по отношению к различным телам. Взгляните на рисунок. При падении гири на каждый из орехов обнаружится, что осколки второго ореха разлетятся намного дальше, чем осколки первого. Следовательно, по отношению к ореху 1 гиря обладает меньшей потенциальной энергией, чем по отношению к ореху 2. Важно: в отличие от кинетической энергии, потенциальная энергия не зависит от положения и движения наблюдателя, а зависит от выбора нами «нулевого уровня» энергии.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.

Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.

Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.

E пот + E кин = const

Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.

Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.

Пример:

При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.

Преобразование энергии отображено на рисунке и в таблице.

Точка нахождения тела

Потенциальная энергия

Кинетическая энергия

Полная механическая энергия

E пот = m ⋅ g ⋅ h (max)

E полная = m ⋅ g ⋅ h

2) Средняя

(h = средняя)

E пот = m ⋅ g ⋅ h

E кин = m ⋅ v 2 2

E полная = m ⋅ v 2 2 + m ⋅ g ⋅ h

E кин = m ⋅ v 2 2 (max)

E полная = m ⋅ v 2 2

Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.

Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:

v max = 2 ⋅ g ⋅ h max .

Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:

h max = v max 2 2 g .

Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке », в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.

На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна \(нулю\). Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна \(нулю\). Жёлто-зелёная линия изображает полную механическую энергию - сумму потенциальной и кинетической - в каждый момент движения и в каждой точке траектории. Как видно, она остаётся \(неизменной\) во всё время движения. Частота точек характеризует скорость движения - чем дальше точки расположены друг от друга, тем больше скорость движения.

1. Рассмотрим свободное падение тела с некоторой высоты h относительно поверхности Земли (рис. 77). В точке A тело неподвижно, поэтому оно обладает только потенциальной энергией.В точке B на высоте h 1 тело обладает и потенциальной энергией, и кинетической энергией, поскольку тело в этой точке имеет некоторую скорость v 1 . В момент касания поверхности Земли потенциальная энергия тела равна нулю, оно обладает только кинетической энергией.

Таким образом, во время падения тела его потенциальная энергия уменьшается, а кинетическая увеличивается.

Полной механической энергией E называют сумму потенциальной и кинетической энергий.

E = E п + E к.

2. Покажем, что полная механическая энергия системы тел сохраняется. Рассмотрим еще раз падение тела на поверхность Земли из точки A в точку C (см. рис. 78). Будем считать, что тело и Земля представляют собой замкнутую, систему тел, в которой действуют только консервативныесилы, в данном случае сила тяжести.

В точке A полная механическая энергия тела равна его потенциальной энергии

E = E п = mgh .

В точке B полная механическая энергия тела равна

E = E п1 + E к1 .
E п1 = mgh 1 , E к1 = .

Тогда

E = mgh 1 + .

Скорость тела v 1 можно найти по формуле кинематики. Поскольку перемещение тела из точки A в точку B равно

s = h h 1 = , то= 2g (h h 1).

Подставив это выражение в формулу полной механической энергии, получим

E = mgh 1 + mg (h h 1) = mgh .

Таким образом, в точке B

E = mgh .

В момент касания поверхности Земли (точка C ) тело обладает только кинетической энергией, следовательно, его полная механическая энергия

E = E к2 = .

Скорость тела в этой точке можно найти по формуле= 2gh , учитывая, что начальная скорость тела равна нулю. После подстановки выражения для скорости в формулу полной механической энергии получим E = mgh .

Таким образом, мы получили, что в трех рассмотренных точках траектории полная механическая энергия тела равна одному и тому же значению: E = mgh . К такому же результату мы придем, рассмотрев другие точки траектории тела.

Полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, остается неизменной при любых взаимодействиях тел системы.

Это утверждение является законом сохранения механической энергии.

3. В реальных системах действуют силы трения. Так, при свободном падении тела в рассмотренном примере (см. рис. 78) действует сила сопротивления воздуха, поэтому потенциальная энергия в точке A больше полной механической энергии в точке B и в точке C на величину работы, совершаемой силой сопротивления воздуха: DE = A . При этом энергия не исчезает, часть механической энергии превращается во внутреннюю энергию тела и воздуха.

4. Как вы уже знаете из курса физики 7 класса, для облегчения труда человека используют различные машины и механизмы, которые, обладая энергией, совершают механическую работу. К таким механизмам относят, например, рычаги, блоки, подъемные краны и др. При совершении работы происходит преобразование энергии.

Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно или какая часть совершенной (полной) работы является полезной. Эта величина называется коэффициентом полезного действия (КПД).

Коэффициентом полезного действия h называют величину, равную отношению полезной работы A n к полной работе A .

Обычно КПД выражают в процентах.

h = 100%.

5. Пример решения задачи

Парашютист массой 70 кг отделился от неподвижно висящего вертолета и, пролетев 150 м до раскрытия парашюта, приобрел скорость 40 м/с. Чему равна работа силы сопротивления воздуха?

Дано :

Решение

m = 70 кг

v 0 = 0

v = 40 м/с

sh = 150 м

За нулевой уровень потенциальной энергии выберем уровень, на котором парашютист приобрел скорость v . Тогда при отделении от вертолета в начальном положении на высоте h полная механическая энергия парашютиста, равна его потенциальной энергии E=E п = mgh , поскольку его кинети-

A ?

ческая энергия на данной высоте равна нулю. Пролетев расстояние s = h , парашютист приобрел кинетическую энергию, а его потенциальная энергия на этом уровне стала равна нулю. Таким образом, во втором положении полная механическая энергия парашютиста равна его кинетической энергии:

E = E к = .

Потенциальная энергия парашютиста E п при отделении от вертолета не равна кинетической E к, поскольку сила сопротивления воздуха совершает работу. Следовательно,

A = E к – E п;

A =– mgh .

A =– 70 кг 10 м/с 2 150 м = –16 100 Дж.

Работа имеет знак «минус», поскольку она равна убыли полной механической энергии.

Ответ: A = –16 100 Дж.

Вопросы для самопроверки

1. Что называют полной механической энергией?

2. Сформулируйте закон сохранения механической энергии.

3. Выполняется ли закон сохранения механической энергии, если на тела системы действует сила трения? Ответ поясните.

4. Что показывает коэффициент полезного действия?

Задание 21

1. Мяч массой 0,5 кг брошен вертикально вверх со скоростью 10 м/с. Чему равна потенциальная энергия мяча в высшей точке подъема?

2. Спортсмен массой 60 кг прыгает с 10-метровой вышки в воду. Чему равны: потенциальная энергия спортсмена относительно поверхности воды перед прыжком; его кинетическая энергия при вхождении в воду; его потенциальная и кинетическая энергия на высоте 5 м относительно поверхности воды? Сопротивлением воздуха пренебречь.

3. Определите коэффициент полезного действия наклонной плоскости высотой 1 м и длиной 2 м при перемещении по ней груза массой 4 кг под действием силы 40 Н.

Основное в главе 1

1. Виды механического движения.

2. Основные кинематические величины (табл. 2).

Таблица 2

Название

Обозначение

Что характери- зует

Едини ца изме- рения

Способ измерения

Вектор или скаляр

Относительная или абсолютная

Координат а

x , y , z

положение тела

м

Линейка

Скаляр

Относительная

Путь

l

изменение положения тела

м

Линейка

Скаляр

Относительная

Перемеще ние

s

изменение положения тела

м

Линейка

Вектор

Относительная

Время

t

длительность процесса

с

Секундомер

Скаляр

Абсолютная

Скорость

v

быстроту изменения положения

м/с

Спидометр

Вектор

Относительная

Ускорение

a

быстроту изменения скорости

м/с2

Акселерометр

Вектор

Абсолютная

3. Основные уравнения движения (табл. 3).

Таблица 3

Прямолинейное

Равномерное по окружности

Равномерное

Равноускоренное

Ускорение

a = 0

a = const; a =

a = ; a = w2R

Скорость

v = ; vx =

v = v 0 + at ;

vx = v 0x + axt

v = ; w =

Перемещение

s = vt ; sx =vxt

s = v 0t + ; sx =vxt+

Координата

x = x 0 + vxt

x = x 0 + v 0xt +

4. Основные графики движения.

Таблица 4

Вид движения

Модуль и проекция ускорения

Модуль и проекция скорости

Модуль и проекция перемещения

Координата*

Путь*

Равномерное

Равноускоренно е

5. Основные динамические величины.

Таблица 5

Название

Обозна- чение

Едини ца изме- рения

Что характеризует

Способ измерения

Вектор или скаляр

Относитель ная или абсолютная

Масса

m

кг

Инертность

Взаимодействие, взвешивание на рычажных весах

Скаляр

Абсолютная

Сила

F

Н

Взаимодействие

Взвешивание на пружинных весах

Вектор

Абсолютная

Импульс тела

p = m v

кгм/с

Состояние тела

Косвенный

Вектор

Относительна я

Импульс силы

F t

Нс

Изменение состояния тела (изменение импульса тела)

Косвенный

Вектор

Абсолютная

6. Основные законы механики

Таблица 6

Название

Формула

Примечание

Границы и условия применимости

Первый закон Ньютона

Устанавливаетсуществование инерциальных систем отсчета

Справедливы: в инерциальных системах отсчета; для материальных точек; для тел, движущихся со скоростями, много меньшими скорости света

Второй закон Ньютона

a =

Позволяет определить силу, действующую на каждое из взаимодействующих тел

Третий закон Ньютона

F 1 = F 2

Относится к обоим взаимодействующим телам

Второй закон Ньютона (другая формулировка)

m v m v 0 = F t

Устанавливает изменение импульса тела при действии на него внешней силы

Закон сохранения импульса

m 1 v 1 + m 2 v 2 = = m 1 v 01 + m 2 v 02

Справедлив для замкнутых систем

Закон сохранения механической энергии

E = E к + E п

Справедлив для замкнутых систем, в которых действуют консервативные силы

Закон изменения механической энергии

A = D E = E к + E п

Справедлив для незамкнутых систем, в которых действуют неконсервативные силы

7. Силы в механике.

8. Основные энергетические величины.

Таблица 7

Название

Обознач ение

Едини цаbиз ме- рения

Что характеризует

Связь с другими величинами

Вектор или скаляр

Относительная или абсолютная

Работа

A

Дж

Измерение энергии

A =Fs

Скаляр

Абсолютная

Мощность

N

Вт

Быстроту совершения работы

N =

Скаляр

Абсолютная

Механическа я энергия

E

Дж

Способность совершить работу

E = E п + E к

Скаляр

Относительная

Потенциальн ая энергия

E п

Дж

Положение

E п = mgh

E п =

Скаляр

Относительная

Кинетическа я энергия

E к

Дж

Положение

E к =

Скаляр

Относительная

Коэффициен т полезного действия

Какая часть совершенной работы является полезной




← Вернуться

×
Вступай в сообщество «perstil.ru»!
ВКонтакте:
Я уже подписан на сообщество «perstil.ru»