Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля. Энергия электрического поля. Электрическая энергия системы зарядов. Энергия уединенного проводника. Энергия конденсатора. Плотность энергии Энергия заряженных п

Подписаться
Вступай в сообщество «perstil.ru»!
ВКонтакте:

Энергия системы зарядов, уединенного проводника, конденсатора.

1. Энергия системы неподвижных точечных зарядов . Как мы уже знаем, электростатические силы взаимодействия консервативны; значит, система зарядов обладает потенциальной энергией. Будем искать потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , которые находятся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (используем формулу потенциала уединенного заряда): где φ 12 и φ 21 - соответственно потенциалы, которые создаются зарядом Q 2 в точке нахождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Согласно, и поэтому W 1 = W 2 = W и Добавляя к нашей системе из двух зарядов последовательно заряды Q 3 , Q 4 , ... , можно доказать, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна (1) где φ i - потенциал, который создается в точке, где находится заряд Q i , всеми зарядами, кроме i-го. 2. Энергия заряженного уединенного проводника . Рассмотрим уединенный проводник, заряд, потенциал и емкость которого соответственно равны Q, φ и С. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный проводник, при этом затратив на это работу, которая равна ");?>" alt="элементарная работа сил электрического поля заряженного проводника"> Чтобы зарядить тело от нулевого потенциала до φ, нужно совершить работу (2) Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник: (3) Формулу (3) можно также получить и условия, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Если φ - потенциал проводника, то из (1) найдем где Q=∑Q i - заряд проводника. 3. Энергия заряженного конденсатора . Конденсатор состоит из заряженных проводников поэтому обладает энергией, которая из формулы (3) равна (4) где Q - заряд конденсатора, С - его емкость, Δφ - разность потенциалов между обкладками конденсатора. Используя выражение (4), будем искать механическую (пондеромоторную) силу , с которой пластины конденсатора притягиваются друг к другу. Для этого сделаем предположение, что расстояние х между пластинами изменилось на величину dx. Тогда действующая сила совершает работу dA=Fdx вследствие уменьшения потенциальной энергии системы Fdx = - dW, откуда (5) Подставив в (4) выражение для емкости плоского конденсатора, получим (6) Продифференцировав при фиксированном значении энергии (см. (5) и (6)), получим искомую силу: где знак минус указывает, что сила F является силой притяжения. 4. Энергия электростатического поля . Используем выражение (4), которое выражает энергию плоского конденсатора посредством зарядов и потенциалов, и спользуя выражением для емкости плоского конденсатора (C=ε 0 εS/d) и разности потенциалов между его обкладками (Δφ=Ed. Тогда (7) где V= Sd - объем конденсатора. Формула (7) говорит о том, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е. Объемная плотность энергии электростатического поля (энергия единицы объема) (8) Выражение (8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение: Р = æε 0 Е . Формулы (4) и (7) соответственно выражают энергию конденсатора через заряд на его обкладках и через напряженность поля. Возникает вопрос о локализации электростатической энергии и что является ее носителем - заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика занимается изучением постоянных во времени поля неподвижных зарядов, т. е. в ней поля и попродившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на данный вопрос не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать отдельно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, которые способны переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле .

Рассмотрим сначала уединенный проводник, находящийся достаточно далеко от других тел. Если этому проводнику сообщить заряды после их перераспределения по объему проводника он приобретает потенциалы Отношение для данного уединенного проводника оказывается постоянным, зависящим только от его формы и размеров, и называется его электроемкостью. Это отношение сохраняется и при бесконечно малых изменениях заряда и потенциала, так что

Понятие электроемкости применимо только к проводникам, так как для них существует равновесное распределение зарядов по объему тела, при котором все точки проводника имеют один и тот же потенциал. Если же заряд сообщается изолятору, то он не растекается по нему и поэтому в различных местах изолятора потенциал может быть различен (в зависимости от расстояний до того места, где находится подведенный заряд).

Емкость уединенного шара радиуса находящегося в безграничном диэлектрике с проницаемостью легко рассчитать, так как потенциал на его поверхности (а следовательно, и в любой точке его объема)

В системе в

При наличии вблизи данного проводника других тел - проводников или изоляторов - отношение (1.58) зависит также от формы, размеров и относительного расположения соседних тел. Если эти соседние тела - проводники, то в них происходит перераспределение свободных зарядов, электрическое поле которых накладывается на поле данного тела и изменяет его потенциал. Если же соседние тела - диэлектрики, то они поляризуются, вследствие чего на поле данного тела накладывается поле связанных зарядов диэлектрика; это опять-таки изменяет потенциал рассматриваемого проводника.

Таким образом, при наличии соседних тел данный проводник при сообщении ему заряда приобретает иной потенциал, чем при их отсутствии.

Понятие электроемкости можно применять и к системе проводников; простейшей из них является система из двух одинаковых близко расположенных проводников, которым сообщаются равные и противоположные по знаку заряды. В частности, рассмотрим плоский конденсатор состоящий из двух близко расположенных параллельных металлических пластинок (обкладок); при сообщении обкладкам конденсатора зарядов они приобретают потенциалы Электроемкостью конденсатора называется отношение заряда на одной из его обкладок (по абсолютному значению, без учета знака) к

разности потенциалов между обкладками:

Допустим, что расстояние между обкладками настолько мало, что электрическое поле между ними можно считать однородным; напряженность этого поля, согласно формуле (1.36),

где площадь обкладок; поверхностная плотность зарядов на обкладках. Для однородного поля выполняется соотношение (1.45), поэтому

Подставив это выражение в формулу (1.60), получаем формулу Для расчета емкости плоского (двухпластинчатого) конденсатора:

У шарового конденсатора потенциалы на обкладках определяются зарядами которые имеются на этих обкладках, и их радиусами и

поэтому формула для расчета емкости такого конденсатора имеет вид

где величина зазора между обкладками. Если радиусы обкладок очень велики и мало, то можно положить (площадь обкладок) и тогда полученная формула будет совпадать с (1.61).

У цилиндрического конденсатора определяется емкость, приходящаяся на единицу длины. Выведем сначала формулу для разности потенциалов между обкладками; согласно формулам (1.32), (1.13) и (1.39), имеем:

(Интегрирование ведем вдоль перпендикуляра к оси конденсатора, т. е. вдоль направления силовой линии вектора очень длинного цилиндрического конденсатора вектор напряженности поля в зазоре перпендикулярен оси конденсатора: это условие не соблюдается на концах, но этим обстоятельством для достаточно длинных конденсаторов можно пренебречь.) Так как на единице длины каждой обкладки имеется заряд то «погонная» емкость цилиндрического конденсатора будет равна

Если величина зазора очень мала, то По этой формуле рассчитываетсямкость электрического кабеля, состоящего из внутреннего провода и наружной металлической брони, между которыми находится слой диэлектрика.

В электротехнике приходится рассчитывать емкость двухпроводной линии - системы из двух параллельных проводов (обычно круглого сечения). Обозначим

диусы сечений этих проводов через расстояние между осями проводов - через а и допустим, что . В этомслучае поле вокруг каждого провода можно с удовлетворительным приближением рассчитывать по формуле (1.34). Допустим, что на единице длины одного провода находится заряд а другого . В некоторой точке, расположенной на расстоянии х от оси первого провода, суммарная напряженность поля будет равна

Интегрируя вдоль перпендикуляра, соединяющего оси проводников, получим разность потенциалов между проводами:

Следовательно, погонная емкость двухпроводной линии будет равна

Так как было предположено, что расстояние между проводами значительно больше радиуса их сечений, то

В приведенных выше расчетных формулах для электроемкости при использовании системы следует положить а в Международной системе В частности, для плоского конденсатора:

Электроемкость выражается в фарадах В системе единицей электроемкости является сактиметр:

Так как заряда, потенциала, то см.

Рассмотрим параллельное (рис. II 1.26, а) и последовательное (рис. III.26, б) соединения конденсаторов. Если к точкам параллельно соединенных конденсаторов подвести равные и противоположные заряды то они распределятся между обкладками конденсаторов так, что Разность же потенциалов между обкладками всех конденсаторов будет одна и та же (так как они соединены вместе проводниками); обозначим через Емкостью такой системы конденсаторов называется отношение

Однако отношение емкость первого конденсатора, емкость второго и т. д. Следовательно,

Можно показать, что обычный многопластинчатый плоский конденсатор с числом пластин представляет собой параллельное соединение плоских двухпластинчатых конденсаторов, поэтому

Если к точкам последовательно соединенных конденсаторов подвести заряды то вследствие электростатической индукции на обкладках конденсаторов появятся равные и противоположные по знаку заряды При этом пластинки соседних конденсаторов, соединенные между собой проводником, имеют одинаковый потенциал.

Так как разность потенциалов на концах любой линии равна сумме разностей потенциалов на отдельных участках этой линии, то для линии проходящей через электрические поля соединенных конденсаторов, можно написать:

Емкостью этой системы конденсаторов по-прежнему называется отношение

Так как для первого конденсатора для второго то

Заметим интересную деталь: если между обкладками плоского конденсатора поместить несколько металлических пластинок, расположенных параллельно обкладкам (т. е. вдоль эквипотенциальных поверхностей), и если суммарный зазор между ними равен первоначальному зазору то емкость конденсатора не изменится. Действительно, такой конденсатор можно рассматривать как систему последовательно соединенных плоских конденсаторов, поэтому, применив формулу (1.64) и (1.67), получим

т. е. первоначальная емкость конденсатора не изменилась. В частности, емкость конденсатора не изменится, если вдоль эквипотенциальных поверхностей поместить металлические пластинки бесконечно малой толщины.

Если между обкладками плоского конденсатора имеются различные диэлектрики, как это показано на рис. II 1.26, в, а, то для расчета емкости такого конденсатора можно воспользоваться формулами (1.65) и (1.67). Конденсатор (рис. II 1.26, в) можно представить как систему из параллельно соединенных конденсаторов, имеющих одинаковые расстояния между пластинами, но различные и , и тогда

Конденсатор (рис. II 1.26, г) можно представить как систему последовательно соединенных плоских конденсаторов; так как введение или удаление бесконечно тонких металлических пластинок, параллельных обкладкам, не изменяет емкости конденсатора, то эти пластинки можно расположить вдоль границ между диэлектриками. Тогда, воспользовавшись формулами (1.61) и (1.67), получим

Если то эта формула перейдет в (1.61).

Для того чтобы сообщить проводнику некоторый заряд необходимо затратить определенную работу, так как каждая последующая порция подводимого заряда испытывает отталкивающее действие ранее поступивших на проводник одноименных зарядов. Допустим, что очередная порция заряда подводится из бесконечности, где потенциал к проводнику, имеющему уже потенциал Тогда элементарная работа, затрачиваемая на подведение заряда

11. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.

1. Энергия заряженного проводника и конденсатора.

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид:

2. Плотность энергии электростатического поля.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем:

С учетом, что и :

Или .

12. Носители тока в средах. Сила и плотность тока. Уравнение непрерывности. Электрическое поле в проводнике с током. Силовые линии электрического поля и линии тока.

Электрический ток - упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках - электроны , в электролитах - ионы (катионы и анионы ), в газах - ионы и электроны , в вакууме при определенных условиях -электроны , в полупроводниках - электроны и дырки (электронно-дырочная проводимость).

Сила тока - скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока - основная единица в СИ 1 А - есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n - концентрация частиц. Их общий заряд


Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j - это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1), . Направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Уравнение непрерывности.

Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S . Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V , охваченного поверхностью S . Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:

Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I , идущему вовне из области, ограниченный замкнутой поверхностью S . Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q , охватываемый поверхностью S , изменяется за время на , тогда в интегральной форме можно записать.

Согласно определению потенциала (12.17), энергию взаимодействия системы п неподвижных точечных зарядов (/ = 1 ,п) можно определить

где ф, - потенциал, создаваемый в той точке, где находится заряд, всеми зарядами, кроме /-го. Если заряд распределен в пространстве непрерывно с объемной плотностью р = р(г), то элемент объема dV будет иметь заряд dq - pdV. Тогда энергия системы определяется уравнением

|

где V - весь объем, занимаемый зарядом.

Определим энергию заряженного уединенного проводника произвольной формы, заряд, емкость и потенциал которого равны соответственно q, С, ф. Потенциал во всех точках уединенного проводника одинаков. Зная ф, найдем его энергию как

или, используя С = q/q> (формула (12.40)), найдем

Можно доказать, что электрическая энергия системы из п неподвижных заряженных проводников

где OjdS, поскольку в проводнике избыточные заряды распределе-

ны по его внешней поверхности, о, - поверхностная плотность сторонних зарядов на малом элементе поверхности /-го проводника площадью dS. Интегрирование проводится по всей эквипотенциальной внешней поверхности проводника площадью 5). Таким образом, формулу (13.26в) перепишем в виде

где Sj - поверхность заряженных проводников.

В общем случае электрическую энергию любой системы заряженных неподвижных тел - проводников и непроводников - можно найти по формуле

где ф - потенциал результирующего поля всех сторонних и связанных зарядов в точках малых элементов dS и dV заряженных поверхностей и объемов; аир- соответственно поверхностная и объемная плотности сторонних зарядов. Интегрирование проводится по всем заряженным поверхностям S и по всему заряженному объему Стел системы.

Согласно формуле (13.28), если заряд распределен непрерывно, то необходимо разбить заряд каждого тела на бесконечно малые элементы odS или рdV и каждый из них умножить на потенциал ф, создаваемый не только зарядами других объектов, но и элементами заряда этого тела.

Расчет по формуле (13.28) позволяет вычислить полную энергию взаимодействия, поскольку получаем величину, равную сумме энергий взаимодействия заряженных неподвижных тел и их собственных энергий.

Собственная энергия заряженного тела - это энергия взаимодействия друг с другом элементов данного заряженного тела.

Энергию W можно трактовать как потенциальную энергию системы заряженных тел, обусловленную кулоновскими силами их взаимодействия. Влияние среды на энергию системы при неизменном распределении сторонних зарядов таково, что значения потенциалов ф в разных диэлектриках различны. Например, в однородном, изотропном диэлектрике, заполняющем все поле, ф меньше, чем в вакууме, в? раз.

Из формулы (13.28) можно получить также формулу для электрической энергии конденсатора (р = 0):

где -S") и xSj - площади обкладок конденсатора; q = CU .

Изучение переменных электромагнитных полей (тема 20) показало, что они могут существовать отдельно от породивших их систем электрических зарядов и токов, а их распространение в пространстве в виде электромагнитных волн связано с переносом энергии. Так, было доказано, что электромагнитное поле обладает энергией. Соответственно и электростатическое поле обладает энергией, которая распределена в поле с объемной плотностью w e .

Объемная плотность энергии электростатического поля w e в случае однородных полей вычисляется по формуле

Для неоднородных полей справедливо выражение

где dW - энергия малого элемента dV объема поля, в пределах которого величину объемной плотности электростатического поля w e можно считать всюду одинаковой.

Единица объемной плотности энергии электрического поля в СИ - джоуль на метр в кубе (Дж/м 3).

Объемная плотность энергии электростатического поля в изотропной диэлектрической среде (или вакууме)

где D - электрическое смешение. Согласно уравнению (13.12а), D = ce 0 E .

Необходимо отметить, что формулы (13.25) - (13.28а) справедливы для потенциальных электростатических полей, т.е. полей неподвижных заряженных тел.

Для переменных непотенциальных электрических полей понятие потенциала и построенные на его основе выражения для энергии лишены смысла. Эти поля обладают энергией, которую можно найти, пользуясь универсальной формулой, справедливой как для однородного, так и для неоднородного поля:

где V - объем, занимаемый полем.

Энергия поляризованного диэлектрика. Как следует из формулы (13.31), объемная плотность энергии электростатического поля в вакууме

При той же напряженности Е поля в диэлектрической среде объемная плотность энергии поля в г раз больше, чем в вакууме:

Поэтому объемная плотность энергии и> диэл поляризованного диэлектрика определяется как

где Р = х? о^ - поляризованность диэлектрика; х - диэлектрическая восприимчивость диэлектрика.

Пондеромоторные силы. Пондеромоторные силы - это механические силы, которые действуют на заряженные тела, помещенные в электрическое поле. Под действием данных сил поляризованный диэлектрик деформируется - это явление называется электрострикцией. Причиной возникновения пондеромоторных сил является действие неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика. Эти силы обусловлены неоднородностью макрополя, а также микрополя, создаваемого в основном ближайшими молекулами поляризованного диэлектрика.

Рассмотрим, например, заряженный плоский конденсатор (см. рис. 12.18), отключенный от источника (постоянные заряды на обкладках). Введем в него диэлектрик с диэлектрической проницаемостью z таким образом, чтобы между ним и пластинами конденсатора не было даже тонкого зазора (иначе силы электрострикции не передавались бы пластинам и сила взаимодействия между пластинами не менялась бы при введении диэлектрика). Под действием пондеромоторной силы обкладки конденсатора сжимают пластину диэлектрика, помещенного между ними, и в диэлектрике возникает давление.

Если расстояние между пластинами уменьшается на dx, то механическая работа

где F x - проекция силы притяжения F между пластинами конденсатора на положительное положение осиХ. Изменение энергии поля

где S - площадь поверхности обкладки конденсатора.

Согласно закону сохранения энергии, механическая работа сил электрического поля равна уменьшению его энергии. Тогда пондеромоторная сила (сила, действующая на единицу поверхности пластины)

т.е. будет равна объемной плотности энергии электрического поля.

Энергия заряженного проводника. Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды dq , одинаковы и равны потенциалу проводника. Заряд q , находящийся на проводнике, можно рассматривать как систему точечных зарядов dq . Тогда энергия заряженного проводника = Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен , а потенциал обкладки, на которой находится заряд -q , равен . Энергия такой системы =

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает = = Oбъемная плотность энегии электрического поля равна C учетом соотношения D= можно записать ; Зная плотность энергии поля в каждой точке, можно найти энергию поля , заключенного в любом объеме V . Для этого нужно вычислить интеграл: W=

30. Электромагнитная индукция. Опыты Фарадея, правило Ленца, формула для ЭДС электромагнитной индукции, трактовка Максвелла явления электромагнитной индукции Явление электромагнитной индукции открыто М. Фарадеем.Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину Ф=B*S*cosaгде B(Вб)– модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура. Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус: Эта формула носит название закона Фарадея. Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение называется правилом Ленца. Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.1)Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле В перпендикулярное плоскости контура. Пусть одна из сторон контура длиной L скользит со скоростью v по двум другим сторонам.На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью v зарядов, направлена вдоль проводника. Она играет роль сторонней силы. Ее модуль равен Fл=evB. Работа силы F Л на пути L равна A=Fл*L=evBL.По определению ЭДС. В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За время Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно, Для того, чтобы установить знак в формуле, нужно выбрать согласованные между собой по правилу правого буравчика направление нормали n и положительное направление обхода контура L Если это сделать, то легко прийти к формуле Фарадея.



Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный I инд = инд /R. За время Δt на сопротивлении R выделится джоулево тепло .Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера. модуль силы Ампера равен F A = I B l. Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа . Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение . Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не являетсяпотенциальным . Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г.Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.



← Вернуться

×
Вступай в сообщество «perstil.ru»!
ВКонтакте:
Я уже подписан на сообщество «perstil.ru»